期刊文献+
共找到1,459篇文章
< 1 2 73 >
每页显示 20 50 100
Electromagnetic Performance Analysis of Variable Flux Memory Machines with Series-magnetic-circuit and Different Rotor Topologies
1
作者 Qiang Wei Z.Q.Zhu +4 位作者 Yan Jia Jianghua Feng Shuying Guo Yifeng Li Shouzhi Feng 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期3-11,共9页
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies... In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions. 展开更多
关键词 Memory machine permanent magnet Rotor topologies Series magnetic circuit Variable flux
下载PDF
Design Optimization of a Novel Axial-radial Flux Permanent Magnet Claw Pole Machine with SMC Cores and Ferrite Magnets
2
作者 Chengcheng Liu Fan Yang +1 位作者 Wenfeng Zhang Youhua Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第4期358-365,共8页
Soft magnetic composite(SMC)material is an ideal soft magnetic material employed for developing 3D magnetic flux electromagnetic equipment,due to its advantages of 3D magnetic isotropy characteristic,low eddy current ... Soft magnetic composite(SMC)material is an ideal soft magnetic material employed for developing 3D magnetic flux electromagnetic equipment,due to its advantages of 3D magnetic isotropy characteristic,low eddy current loss,and simple manufacturing process.The permanent magnet claw pole machine(PMCPM)with SMC cores is a good case that the SMC to be adopted for developing 3D flux electrical machines.In this paper,a novel axial-radial flux permanent magnet claw pole machine(ARPMCPM)with SMC cores and ferrite magnets is proposed.Compared with the traditional PMCPM,the proposed ARPMCPM is designed with only one spoke PM rotor and its whole structure is quite compact.For the performance prediction,the 3D finite element method(FEM)is used.Meanwhile,for the performance evaluation,a previously developed axial flux claw pole permanent magnet machine(AFCPM)is employed as the benchmark machine and all these machines are optimized by using the combined multilevel robust Taguchi method.It can be seen that the proposed ARPMCPM is with higher torque/weight density and operation efficiency. 展开更多
关键词 Soft magnetic composite(SMC) permanent magnetic claw pole machine(PMCPM) axial-radial flux
下载PDF
Multi-layer Quasi Three-dimensional Equivalent Model of Axial-Flux Permanent Magnet Synchronous Machine 被引量:7
3
作者 Mingjie He Weiye Li +1 位作者 Jun Peng Jiangtao Yang 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第1期3-12,共10页
Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based... Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based on the three-dimensional finite element method(3D FEM)due to its three-dimensional magnetic field distribution.However,the 3D FEM suffers large amount of calculation,time-consuming and is not suitable for the optimization of AFPMSM.Addressing this issue,a multi-layer quasi three-dimensional equivalent model of the AFPMSM is investigated in this paper,which could take the end leakage into consideration.Firstly,the multi-layer quasi three-dimensional equivalent model of the AFPMSM with single stator and single rotor is derived in details,including the equivalent processes and conversions of structure dimensions,motion conditions and electromagnetic parameters.Then,to consider the influence of end leakage on the performance,a correction factor is introduced in the multi-layer quasi three-dimensional equivalent model.Finally,the proposed multi-layer quasi three-dimensional equivalent model is verified by the 3D FEM based on an AFPMSM under different structure parameters.It demonstrates that the errors of flux linkage and average torque obtained by the multi-layer quasi three-dimensional equivalent model and 3D FEM are only around 2%although the structure parameters of the AFPMSM are varied.Besides,the computation time of one case based on the multi-layer quasi three-dimensional equivalent model is only 6 min,which is much less than that of the 3D FEM,1.8 h,under the same conditions.Thus,the proposed multi-layer quasi three-dimensional equivalent model could be used to optimize the AFPMSM and much time could be saved by this method compared with the 3D FEM. 展开更多
关键词 axial flux equivalent model end leakage permanent magnet machine
下载PDF
Design and Performance Analysis of Axial Flux Permanent Magnet Machines with Double-Stator Dislocation Using a Combined Wye-Delta Connection 被引量:3
4
作者 Bing Peng Xiaoyu Zhuang 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第1期53-59,共7页
Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machin... Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection. 展开更多
关键词 axial flux permanent magnet machine combined star-delta winding double-stator dislocation accurate subdomain model
下载PDF
Comparative Study of Novel Axial Flux Magnetically Geared and Conventional Axial Flux Permanent Magnet Machines 被引量:2
5
作者 Mohammed F.H.Khatab Z.Q.Zhu +1 位作者 Hua-Yang Li Yue Liu 《CES Transactions on Electrical Machines and Systems》 2018年第4期392-398,共7页
In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construct... In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construction in which segments are equipped with concentrated windings to form the stator.However,the AFMG machine has two rotors with different pole-pair numbers.Magnetic gear effect can be obtained to increase the torque density.The performance comparisons at no-load and on-load conditions are then studied by 3D-finite element analysis(FEM).Moreover,both machines are prototyped,tested and compared. 展开更多
关键词 axial flux magnetically geared machine finite element analysis performance comparison YASA machine
下载PDF
Design Optimization of Axial Flux Permanent Magnet (AFPM) Synchronous Machine Using 3D FEM Analysis
6
作者 Joya C. Kappatou Georgios D. Zalokostas Dimitrios A. Spyratos 《Journal of Electromagnetic Analysis and Applications》 2016年第11期247-260,共15页
This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonline... This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine. 展开更多
关键词 axial flux permanent magnet magnet Topology synchronous Generator
下载PDF
Feasibility of a New Ironless-stator Axial Flux Permanent Magnet Machine for Aircraft Electric Propulsion Application 被引量:13
7
作者 Zhuoran Zhang Weiwei Geng +1 位作者 Ye Liu Chen Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第1期30-38,共9页
With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor featur... With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor features are analyzed in this paper.Comparing with conventional PM machines,ironless stator axial flux permanent magnet(AFPM)machine topologies with Litz wire windings allow designs with higher compactness,lightness and efficiency,which are suitable for high-frequency and high-power density applications.Based on the motor requirements and constraints of aircraft electric propulsion systems,this paper investigates a high-power 1 MW multi-stack ironless stator AFPM machine,which is composed of four 250kW modular motors by stacking in axial.The design guidelines and special attentions are presented,in term of electromagnetic,thermal,and mechanical performance for the high-frequency coils and Halbach-array PM rotor.Finally,an ironless stator AFPM motor is manufactured,tested and evaluated with the consideration of cost and processing cycle.The results show that the output power is up to 53.8kW with 95%efficiency at 9000r/min at this stage.The proposed ironless stator AFPM machine with oil immersed forced cooling proves to be a favorable candidate for application in electric aircraft as propulsion motors. 展开更多
关键词 axial flux machine electric aircraft electric propulsion ironless stator permanent magnet machine oil cooling.
下载PDF
Cogging Torque Reduction in Axial Flux PMSM with Different Permanent Magnet Combination 被引量:2
8
作者 WANG Xiaoguang LIU Cheng +2 位作者 ZHOU Sheng WAN Ziwei LIU Yi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期726-736,共11页
With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas... With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets. 展开更多
关键词 axial flux permanent magnet synchronous motor(AFPMSM) rotor structure cogging torque hybrid permanent magnet pole-arc ratio
下载PDF
Coupled Electromagnetic-Thermal-Fluidic Analysis of Permanent Magnet Synchronous Machines with a Modified Model 被引量:8
9
作者 Gaojia Zhu Xiaoming Liu +2 位作者 Longnv Li Hai Chen Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期204-209,共6页
The researches on the heat generation and dissipa-tion of the permanent magnet synchronous machines(PMSMs)are integrated problems involving multidisciplinary studies of electromagnetism,thermomechanics,and computation... The researches on the heat generation and dissipa-tion of the permanent magnet synchronous machines(PMSMs)are integrated problems involving multidisciplinary studies of electromagnetism,thermomechanics,and computational fluid dynamics.The governing equations of the multi-physical prob-lems are coupled and hard to be solved and illustrated.The high accuracy mathematical model in the algebraically integral con-servative forms of the coupled fields is established and computed in this paper.And the equation coupling with the fluid flow and the temperature variation is modified to improve the positive definiteness and the symmetry of the global stiffness matrix.The computational burden is thus reduced by the model modification.A 20kW 4500rpm permanent magnet synchronous machine(PMSM)is taken as the prototype,and the calculation results are validated by experimental ones. 展开更多
关键词 Cell method(CM) model modification mul-ti-physics coupled problems permanent magnet synchronous machine(PMSM).
下载PDF
An Improved Stator Flux Observation Method of Permanent Magnet Synchronous Motor 被引量:1
10
作者 Guangjing Su Hongmei Li +1 位作者 Ying Dai Zheng Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第6期90-96,共7页
The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage mod... The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision. 展开更多
关键词 permanent magnet synchronous motor direct torque control second-order generalized integrator stator flux observation electromagnetic torque observation
下载PDF
Three-dimensional Analytical Modeling of Axial Flux Permanent Magnets Maglev Motor 被引量:2
11
作者 Wei Qin Gang Lv Yuhua Ma 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期438-444,共7页
The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic charact... The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic characteristics.Firstly,the topology and working principle of the AFPMMM is introduced,and the model is transferred into a mathematical model in 3D cartesian coordinate.Then,the volume integral method and equivalent current sheets model is applied to find the 3D magnetic field distribution function of Halbach rotor.A unified form expression can be obtained by two dimensional discrete fourier transform(2-D DFT)is applied on the 3D magnetic field distribution function.Thirdly,the conductive and nonconductive regions of AFPMMM will be formulated by the second order vector potential(SOVP)to built the 3D analytic model.The expression of the lift force,torque and power losses was derived.Besides,the relationship between electromagnetic characteristics and structural parameters of the AFPMMM were analyzed based on 3D analytic model and validated using the 3D finite element analysis(FEA).Finally,the experiments based on a small scale prototype are carried out to verify the analytical results. 展开更多
关键词 axial flux permanent magnet machines MAGLEV Analytical model Electromagnetic performance
下载PDF
Model predictive flux control of permanent magnet synchronous motor driven by three-level inverter based on fine-division strategy 被引量:1
12
作者 MIAO Zhongcui LI Haiyuan +1 位作者 HE Yangyang WANG Yunkun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期439-450,共12页
Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model... Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) three-level inverter model predictive flux control(MPFC) weight coefficient midpoint potential
下载PDF
Multi-objective Hierarchical Optimization of Interior Permanent Magnet Synchronous Machines Based on Rotor Surface Modification 被引量:1
13
作者 Ran Xu Wenming Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期352-358,共7页
To solve the problem of large torque ripple of interior permanent magnet synchronous motor(IPMSM),the rotor surface notch design method was used for V-type IPMSM.In order to accurately obtain the optimal parameter val... To solve the problem of large torque ripple of interior permanent magnet synchronous motor(IPMSM),the rotor surface notch design method was used for V-type IPMSM.In order to accurately obtain the optimal parameter values to improve the torque performance of the motor,this paper takes the output torque capacity and torque ripple as the optimization objectives,and proposes a multi-objective layered optimization method based on the parameter hierarchical design combined with Taguchi method and response surface method(RSM).The conclusion can be drawn by comparing the electromagnetic performance of the motor before and after optimization,the proposed IPMSM based on the rotor surface notch design can not only improve the output torque,but also play an obvious inhibition effect on the torque ripple. 展开更多
关键词 Interior permanent magnet synchronous machine Torque ripple Rotor surface modification RSM Multi-objective hierarchical optimization
下载PDF
Developing a 3D-FEM Model for Electromagnetic Analysis of an Axial Flux Permanent Magnet Machine
14
作者 Seyyed Mehdi Mirimani Abolfazl Vahedi 《Journal of Electromagnetic Analysis and Applications》 2010年第4期258-263,共6页
Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not ac... Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis. 展开更多
关键词 axial flux permanent magnet (AFPM) Motor Three-Dimensional FINITE-ELEMENT Method (3D-FEM) COGGING TORQUE
下载PDF
Reduction of Cogging Torque in Permanent Magnet Flux-Switching Machines
15
作者 Yu Wang Jianxin Shen +1 位作者 Zongxi Fang Weizhong Fei 《Journal of Electromagnetic Analysis and Applications》 2009年第1期11-14,共4页
Permanent magnet flux-switching machine (PMFSM) is a relatively new structure. Available literatures mainly focused on its general design procedure and performance analysis. In this paper, Finite Element Method (FEM) ... Permanent magnet flux-switching machine (PMFSM) is a relatively new structure. Available literatures mainly focused on its general design procedure and performance analysis. In this paper, Finite Element Method (FEM) is taken to ana-lyze various design techniques to reduce the cogging torque in a prototype 12/10-pole PMFSM. 展开更多
关键词 permanent magnet flux-SWITCHING machines FEM
下载PDF
Novel Switched Flux Permanent Magnet Machine Topologies 被引量:7
16
作者 诸自强 《电工技术学报》 EI CSCD 北大核心 2012年第7期1-16,共16页
This paper overviews various switched flux permanent magnet machines and their design and performance features,with particular emphasis on machine topologies with reduced magnet usage or without using magnet,as well a... This paper overviews various switched flux permanent magnet machines and their design and performance features,with particular emphasis on machine topologies with reduced magnet usage or without using magnet,as well as with variable flux capability. 展开更多
关键词 电工技术 电力科学 技术教育 电力学
下载PDF
Reduction of Cogging Torque and Electromagnetic Vibration Based on Different Combination of Pole Arc Coefficient for Interior Permanent Magnet Synchronous Machine 被引量:9
17
作者 Feng Liu Xiuhe Wang +2 位作者 Zezhi Xing Aiguo Yu Changbin Li 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第4期291-300,共10页
Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of ... Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance. 展开更多
关键词 Cogging torque different combination of pole arc coefficient electromagnetic vibration interior permanent magnet synchronous machine
下载PDF
Hybrid Excited Permanent Magnet Machines for Electric and Hybrid Electric Vehicles 被引量:7
18
作者 Z.Q.Zhu S.Cai 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第3期233-247,共15页
This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The... This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized. 展开更多
关键词 Electric vehicle(EV) flux weakening control hybrid electric vehicle(HEV) hybrid excited(HE)machine open-winding permanent magnet(PM).
下载PDF
Visualization and Quantitative Evaluation of Eddy Current Loss in Bar-Wound Type Permanent Magnet Synchronous Motor for Mild-Hybrid Vehicles 被引量:5
19
作者 Masahiro Aoyama Jianing Deng 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第3期269-278,共10页
This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applicati... This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported. 展开更多
关键词 Conductor eddy current loss hairpin windings type permanent magnet synchronous motor leakage magnetic flux.
下载PDF
Design and Optimization of a Mechanical Variable-Leakage-Flux Interior Permanent Magnet Machine with Auxiliary Rotatable Magnetic Poles 被引量:4
20
作者 Tongze Sun Xiping Liu +2 位作者 Yongling Zou Chaozhi Huang Jianwei Liang 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第1期21-29,共9页
A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnet... A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnetic poles.The magnetic poles acting as the flux adjustors can be rotated by the additional device to vary the leakage flux in magnetic circuit and realize the adjustment of the PM flux linkage.Due to the flux-regulating effect,the flux distribution in this machine is complex and changeable.Therefore,the working principle is illustrated in detail.To obtain the perfect coordination between the dominant magnetic poles and auxiliary magnetic poles,a multi-objective optimization method is presented based on the parameter sensitivity analysis combining with the Coefficient of Prognosis(CoP).Then,some design parameters with strong sensitive are selected by the sensitivity analysis and the initial model of the proposed motor is optimized by utilizing the multi-objective genetic algorithm(MOGA).According to the result of the optimization,the machine performances of the initial and the optimal design under the different flux states are compared and analyzed to verify the validity of the new variable-flux motor and the optimization method. 展开更多
关键词 Finite element analysis(FEA) flux regulation Interior permanent magnet machine multi-objective optimization sensitivity analysis.
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部