In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of...In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.展开更多
In order to study the axial compression performances of short columns made of recycled aggregate concrete,four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plas...In order to study the axial compression performances of short columns made of recycled aggregate concrete,four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plastics(CFRP)sheets.Then,monotonic loading was implemented to assess the variation trends of their axial compression properties.The ABAQUS finite element software was also used to determined the compression performances.Good agreement between experimental and numerical results has been found for the different parameters being considered.As shown by the results,recycled coarse aggregates result in improved ductility and better deformation performance of the specimens.The failure of specimens caused by pre damage can be compensated by using CFRP sheets,by which both the resistance to deformation and the axial carrying capacity of columns can be increased.展开更多
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba...The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.展开更多
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping City(N2021Z007)the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University(LYGC202119).
文摘In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.
文摘In order to study the axial compression performances of short columns made of recycled aggregate concrete,four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plastics(CFRP)sheets.Then,monotonic loading was implemented to assess the variation trends of their axial compression properties.The ABAQUS finite element software was also used to determined the compression performances.Good agreement between experimental and numerical results has been found for the different parameters being considered.As shown by the results,recycled coarse aggregates result in improved ductility and better deformation performance of the specimens.The failure of specimens caused by pre damage can be compensated by using CFRP sheets,by which both the resistance to deformation and the axial carrying capacity of columns can be increased.
基金supported by the Natural Science Foundation Project of Liaoning Provincial Department of Education of China under Grant No.JJL201915404,Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22E080024 and Zhejiang Province Department of Education Fund of China under Grant No.Y202146776.
文摘The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.