期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
1
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles in-wheel motor Stochastic sampling Dynamic dampers Sampled-data control Multi-objective control
下载PDF
Analysis of an Axial-flux Slotted Limited-angle Torque Motor with Quasi-Halbach Array for Torque Performance Improvement
2
作者 Mingjie Wang Dawei Li Ronghai Qu 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期266-274,共9页
Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosys... Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosystems.This paper presents a high reliability axial-flux slotted LATM with quasi-Halbach array for torque performance improvement including constant torque range(CTR)and output torque.Firstly,the structure with two sets of windings and the operation principle of the proposed slotted LATM is analyzed.Secondly,a brief design procedure is presented,the structure selections of open slot and double-stator single-rotor(DSSR)interior rotor with surface mounted quasi-Halbach permanent magnet(PM)array are illustrated,and the geometric parameters are optimized to obtain the optimal design of the proposed slotted LATM.Then,3-D finite-element method(FEM)is employed to compare the proposed slotted LATM with the conventional surface mounted PM slotted LATM in terms of cogging torque,no-load back EMF,and output torque,and the results show that the proposed LATM with quasi-Halbach array has a 10%improvement in output torque and a 25%improvement in CTR.Meanwhile,the flux linkages and torque performance of the two sets of windings under various conditions verify good magnetic isolation.Finally,prototypes of two different rotor types are manufactured and a series of experiments are performed to validate the analysis. 展开更多
关键词 Limited-angle torque motor(LATM) axial-flux machine Quasi-Halbach array Finite-element method(FEM) Cogging torque Torque performance
下载PDF
Decentralized Dynamic Event-Triggered Communication and Active Suspension Control of In-Wheel Motor Driven Electric Vehicles with Dynamic Damping 被引量:15
3
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期971-986,共16页
This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main ob... This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main objective is to simultaneously improve the desired suspension performance caused by various road disturbances and alleviate the network resource utilization for the concerned in-vehicle networked suspension system. First, a T-S fuzzy active suspension model of an electric vehicle under dynamic damping is established. Second,a novel decentralized dynamic event-triggered communication mechanism is developed to regulate each sensor's data transmissions such that sampled data packets on each sensor are scheduled in an independent manner. In contrast to the traditional static triggering mechanisms, a key feature of the proposed mechanism is that the threshold parameter in the event trigger is adjusted adaptively over time to reduce the network resources occupancy. Third, co-design criteria for the desired event-triggered fuzzy controller and dynamic triggering mechanisms are derived. Finally, comprehensive comparative simulation studies of a 3-degrees-of-freedom quarter suspension model are provided under both bump road disturbance and ISO-2631 classified random road disturbance to validate the effectiveness of the proposed co-design approach. It is shown that ride comfort can be greatly improved in either road disturbance case and the suspension deflection, dynamic tyre load and actuator control input are all kept below the prescribed maximum allowable limits, while simultaneously maintaining desirable communication efficiency. 展开更多
关键词 Active suspension control decentralized eventtriggered control dynamic damper dynamic eventtriggered communication in-wheel motor driven electric vehicle
下载PDF
Driving force coordinated control of an 8x8 in-wheel motor drive vehicle with tire-road friction coefficient identification 被引量:4
4
作者 Zheng Zhang Chun-guang Liu +2 位作者 Xiao-jun Ma Yun-yin Zhang Lu-ming Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第1期119-132,共14页
Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and st... Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and stability of the vehicle,it is crucial to control it and coordinate the driving force.With this aim,this paper presents a driving force coordination control strategy with road identification for eight-wheeled electric vehicles equipped with an in-wheel motor for each wheel.In the proposed control strategy,the road identification module estimates tire-road forces using an unscented Kalman filter al-gorithm and recognizes the road adhesion coefficient by employing the recursive least-square method According to road identification,the optimal sip ratio under the current driving condition is obtainedand a controller based on sliding mode control with a conditional integrator uses this value for accel-eration slip regulation.The anti-slip controller obtains the adjusting torque,which is integrated with the driver-command-based feedforward control torque to implement driving force coordination control.The results of hardware-in-loop simulation show that this control strategy can accurately estimate tire-roadrces as well as the friction coefficient,and thus,can effectively fulfill the purpose of driving force coordinated control under different driving conditions. 展开更多
关键词 in-wheel motor Tire-road friction coefficient Slip ratio Sliding mode control Conditional integrator Accelera tion slip regulation
下载PDF
Torque Distribution of Electric Vehicle with Four In-Wheel Motors Based on Road Adhesion Margin 被引量:3
5
作者 WANG Chunyan LI Wenkui +1 位作者 ZHAO Wanzhong DUAN Tingting 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期181-188,共8页
With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving... With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving torque of each wheel. Considering the longitudinal motion,lateral motion,yaw movement and rotation of the four wheels,the tire model and the seven DOF dynamic model of the vehicle are established in this paper. Then,the torque distribution method is proposed based on road adhesion margin,which can be divided into anti ? slip control layer and torque distribution layer. The anti?slip control layer is built based on sliding mode variable structure control,whose main function is to avoid the excessive slip of wheels caused by road conditions. The torque distribution layer is responsible for selecting the torque distribution method based on road adhesion margin. The simulation results show that the proposed torque distribution method can ensure the vehicle quickly adapt to current road adhesion conditions,and improve the handling stability and dynamic performance of the vehicle in the driving process. 展开更多
关键词 electric vehicle with four in-wheel motors torque distribution road adhesion margin anti-slip control
下载PDF
Electromagnetic analysis and design of in-wheel motor of micro-electric vehicle based on Maxwell 被引量:1
6
作者 陈齐平 舒红宇 +2 位作者 任凯 庄深 谢安源 《Journal of Central South University》 SCIE EI CAS 2012年第8期2152-2157,共6页
To obtain a good drivability and high efficiency of the micro-electric vehicle, a new driving in-wheel motor design was analyzed and optimized. Maxwell software was used to build finite element simulation model of the... To obtain a good drivability and high efficiency of the micro-electric vehicle, a new driving in-wheel motor design was analyzed and optimized. Maxwell software was used to build finite element simulation model of the driving in-wheel motor. The basic features and starting process were analyzed by field-circuit coupled finite element method. The internal complicated magnetic field distribution and dynamic performance simulation were obtained in different positions. No-load and load characteristics of the driving in-wheel motor was simulated, and the power consumption of materials was computed. The conformity of the final simulation results with the experimental data indicates that this method can be used to provide a theoretical basis to make further optimal design of this new driving in-wheel motor and its control system, so as to improve the starting torque and reduce torque ripple of the motor. This method can shorten the development cycle of in-wheel motors and save development costs, which has a wide range of engineering application value. 展开更多
关键词 micro-electric vehicle in-wheel motor MAXWELL SIMULATION OPTIMIZATION
下载PDF
Design of Axial-Flux Motor for Traction Application
7
作者 Nadia Chaker Ibrahim Ben Salah +1 位作者 Souhir Tounsi Rafik Neji 《Journal of Electromagnetic Analysis and Applications》 2009年第2期73-84,共12页
This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finit... This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band. 展开更多
关键词 axial-flux Permanent-Magnet motor DESIGN Criteria Finite Elements TRACTION CHAIN CIRCULATION Mission
下载PDF
四轮轮毂电机电动汽车电子差速控制研究(英文) 被引量:3
8
作者 段敏 孙明江 +2 位作者 李刚 于继开 刘鹏程 《机床与液压》 北大核心 2015年第24期60-66,共7页
针对四轮轮毂电机电动汽车转向时四轮差速问题,进行了电子差速控制研究。设计了电子差速控制策略,建立差速运动参考模型,根据四轮轮毂电机电动汽车四轮驱动力矩独立可控的优势,通过驱动力矩分配器对四轮驱动力矩进行合理分配,实现了实... 针对四轮轮毂电机电动汽车转向时四轮差速问题,进行了电子差速控制研究。设计了电子差速控制策略,建立差速运动参考模型,根据四轮轮毂电机电动汽车四轮驱动力矩独立可控的优势,通过驱动力矩分配器对四轮驱动力矩进行合理分配,实现了实际轮速跟踪参考轮速,并在Matlab/Simulink里搭建了四轮轮毂电机电动汽车电子差速系统模型,通过CarSim与Matlab/Simulink联合仿真进行了验证。结果表明:电子差速差速控制策略能够有效实现转向时四轮差速控制,提高电动汽车的操纵稳定性。 展开更多
关键词 Four WHEEL in-wheel motor electric vehicle Electronic differential Drive TORQUE distributor CARSIM
下载PDF
Rollover prevention control for a four in-wheel motors drive electric vehicle on an uneven road 被引量:5
9
作者 ZHANG LiPeng LI Liang QI BingNan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第6期934-948,共15页
When a four in-wheel motors drive electric vehicle with a specific wheels mass is running on an uneven road and transient steering occurs in the meantime, the joint action of the large unsprung dynamic load and the ce... When a four in-wheel motors drive electric vehicle with a specific wheels mass is running on an uneven road and transient steering occurs in the meantime, the joint action of the large unsprung dynamic load and the centrifugal force may cause the vehicle to rollover. To avoid the above accident, a rollover prevention control method based on active distribution of the in-wheel motors driving torques is investigated. First, tile rollover evolution process of the four in-wheel motors drive electric vehicle under the described operating condition is analyzed. Next, a multiple degrees of freedom vehicle dynamics model including an uneven road tyre model is established, and the rollover warning threshold is determined according to the load transfer ratio. Then, the hypothesis of the effects of unsprung mass on the vehicle roll stability on a plat road and on an uneven road is verified respectively. Finally, a rollover prevention controller is designed based on the distribution of the four wheels driving torques with sliding mode control, and the control effect is verified by simulations. The conclusion shows that, once the wheels mass does not match road conditions, the large unsprung mass may play a detrimental role on the vehicle roll stability on an uneven road, which is different from the beneficial role of large unsprung mass on the vehicle roll stability on a plat road. With the aforementioned rollover prevention controller, the vehicle rollover, which is caused by the coupling effect between large unsprung dynamic load and suspension potential energy on an uneven road, can be avoided effectively. 展开更多
关键词 electric vehicle in-wheel motor drive roll stability uneven road
原文传递
Study of Longitudinal-Vertical Dynamics for In-Wheel Motor-Driven Electric Vehicles 被引量:6
10
作者 Yechen Qin Ze Zhao +1 位作者 Zhenfeng Wang Guofa Li 《Automotive Innovation》 CSCD 2021年第2期227-237,共11页
The in-wheel motor(IWM)-driven electric vehicles(EVs)attract increasing attention due to their advantages in dimensions and controllability.The majority of the current studies on IWM are carried out with the assumptio... The in-wheel motor(IWM)-driven electric vehicles(EVs)attract increasing attention due to their advantages in dimensions and controllability.The majority of the current studies on IWM are carried out with the assumption of an ideal actuator,in which the coupling effects between the non-ideal IWM and vehicle are ignored.This paper uses the braking process as an example to investigate the longitudinal-vertical dynamics of IWM-driven EVs while considering the mechanical-electrical coupling effect.First,a nonlinear switched reluctance motor model is developed,and the unbalanced electric magnetic force(UEMF)induced by static and dynamic mixed eccentricity is analyzed.Then,the UEMF is decomposed into longitudinal and vertical directions and included in the longitudinal-vertical vehicle dynamics.The coupling dynamics are demonstrated under different vehicle braking scenarios;numerical simulations are carried out for various road grades,road friction,and vehicle velocities.A novel dynamics vibration absorbing system is adopted to improve the vehicle dynamics.Finally,the simulation results show that vehicle vertical dynamic performance is enhanced. 展开更多
关键词 Mechanical-electrical coupling Longitudinal-vertical dynamics in-wheel motor Suspension system
原文传递
Torque Distribution Strategy of Electric Vehicle with In-wheel Motors Based on the Identification of Driving Intention 被引量:2
11
作者 Bo Peng Huanhuan Zhang +1 位作者 Feihu Xuan Wenwen Xiao 《Automotive Innovation》 EI 2018年第2期140-146,共7页
A driver’s intention is recognized accurately by employing fuzzy identification and a logic threshold including acceleration intention and steering intention.Different torque distribution control strategies are devel... A driver’s intention is recognized accurately by employing fuzzy identification and a logic threshold including acceleration intention and steering intention.Different torque distribution control strategies are developed for different intentions and the driver’s torque demand is amended by fuzzy identification so that the response of the vehicle is more consistent with the driver’s intention of operation.Finally,a simulation model is built using MATLAB/Simulink to validate the control strategy.Simulation results show that the system accurately identifies the driver’s intention and improves the acceleration performance and steering stability of the vehicle. 展开更多
关键词 Fuzzy recognition Torque distribution Driving intention in-wheel motors Steering stability
原文传递
Variable-Flux Outer-Rotor Permanent Magnet Synchronous Motor for In-Wheel Direct-Drive Applications 被引量:3
12
作者 Yaojing Feng Fang Li +1 位作者 Shoudao Huang Ning Yang 《Chinese Journal of Electrical Engineering》 CSCD 2018年第1期28-35,共8页
In-wheel direct-drive is the most efficient driving mode for electric vehicles,and it is the trend for applications in the future.In this paper,a novel variable-flux outer-rotor permanent magnet synchronous motor with... In-wheel direct-drive is the most efficient driving mode for electric vehicles,and it is the trend for applications in the future.In this paper,a novel variable-flux outer-rotor permanent magnet synchronous motor with a hybrid magnetic structure design is developed.Due to the hybrid magnetic pole with Nd-Fe-B and Al-Ni-Co permanent magnet(PM),the air-gap flux can be adjusted by changing the magnetization states of Al-Ni-Co PM,which is beneficial to realize a wide range of speeds and loads from the electromagnetic structure design.Firstly,basic structure features of the motor and the flux-adjusting principle are introduced.The design and calculation method of the PM dimensions is derived based on magnetic circuit analysis.Then the Preisach hysteresis model of Al-Ni-Co PM is described and is adopted to analyze the motor performance with the coupling of the time step finite element method(FEM),and the magnetization are investigated.Finally,the operational performance of the proposed motor is obtained by simulation,which verifies the design. 展开更多
关键词 Outer-rotor permanent magnet synchronous motor variable flux in-wheel direct-drive MAGNETIZATION finite element method
原文传递
Simulation and verification analysis of the ride comfort of an in-wheel motor-driven electric vehicle based on a combination of ADAMS and MATLAB 被引量:1
13
作者 Peicheng Shi Qi Zhao +2 位作者 Kefei Wang Rongyun Zhang Ping Xiao 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2022年第1期99-116,共18页
To study the ride comfort of wheel-hub-driven electric vehicles,a simulation and verifi-cation method based on a combination of ADAMS and MATLAB modeling is proposed.First,a multibody dynamic simulation model of an in... To study the ride comfort of wheel-hub-driven electric vehicles,a simulation and verifi-cation method based on a combination of ADAMS and MATLAB modeling is proposed.First,a multibody dynamic simulation model of an in-wheel motor-driven electric vehi-cle is established using ADAMS/Car.Then,the pavement excitation and electromag-netic force analytical equations are provided based on the specific operating conditions of the vehicle and the in-wheel motor to analyze the impact of the electromagnetic force fluctuation from an unsprung mass increase and motor air gap unevenness on vehicle ride comfort after the introduction of an in-wheel motor.Next,the vibration model and the motion differential equation of the body–wheel dual-mass system of an in-wheel motor-driven electric vehicle are established.The influence of the in-wheel motor on the vibration response index of the dual-mass system is analyzed by using MATLAB/Simulink software.The variation in the vehicle vibration performance index with/without the motor electromagnetic force excitation factor is analyzed and com-pared with the ADAMS multibody dynamics analysis results.The results show that the method based on a combination of ADAMS and MATLAB modeling can forecast the ride comfort of an in-wheel motor-driven electric vehicle,reducing the cost of physical prototype experiments. 展开更多
关键词 in-wheel motor electric vehicle ride comfort ADAMS/CAR MAT-LAB/Simulink
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部