We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spira...We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.展开更多
We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex b...We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.展开更多
A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerr...A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerre Gaussian (LG) beam and the topological charge of the HA. The obtained spiraling Bessel beams have an LG type of modulation along their propagation direction and exhibit annihilation-reconstruction properties. Theoretical analysis is presented, including that of the stability, propagation distance, topological charge, and spiraling dynamic characteristics. The mathematical and numerical results show that the propagation distance and helical revolution of the spiraling Bessel beams can be controlled through choosing appropriate radius of the HA.展开更多
On the basis of the stationary phase principle,we construct a family of shaping nondiffracting structured caustic beams with the desired morphology.First,the analytical formula of a nondiffracting astroid caustic is d...On the basis of the stationary phase principle,we construct a family of shaping nondiffracting structured caustic beams with the desired morphology.First,the analytical formula of a nondiffracting astroid caustic is derived theoretically using the stationary phase method.Then,several types of typical desired caustics with different shapes are numerically simulated using the obtained formulas.Hence,the key optical structure and propagation characteristics of nondiffracting caustic beams are investigated.Finally,a designed phase plate and an axicon are used to generate the target light field.The experimental results confirm the theoretical prediction.Compared with the classical method,the introduced method for generating nondiffracting caustic beams is high in light-energy utilization;hence,it is expected to be applied conveniently to scientific experiments.展开更多
Since Durnin reported the first experiment of Bessel beams, the related researchwork has developed extensively because of their 'nondiffracting' property andinteresting potential applications. It was shown tha...Since Durnin reported the first experiment of Bessel beams, the related researchwork has developed extensively because of their 'nondiffracting' property andinteresting potential applications. It was shown that nearly nondiffracting Besselbeams can be realized experimentally by using various methods, such as an annularslit system, holographic amplification, an F-P interferometer, axicon and refractingsystem. This note presents the investigation results of the authors on nondiffractingBessel beams with finite beam width, i.e. beams limited by an aperture. Experimentshave been performed to illustrate the advantages of generating Bessel beams with anaxicon. A detailed study of the axial intensity and maximum nondiffracting range ofBessel beams vs. aperture size, and the conversion efficiency of the axicon as a Besselbeam convertor has been given. Within the experimental errors the result are ingood agreement with the theory.展开更多
A novel method to generate a collimated hollow-laser-beam (HLB) by only a single axicon is proposed. With some reasonable assumptions, the radial light intensity distribution is calculated in detail by diffraction int...A novel method to generate a collimated hollow-laser-beam (HLB) by only a single axicon is proposed. With some reasonable assumptions, the radial light intensity distribution is calculated in detail by diffraction integral theory.The result of numerical simulation shows that this method is valid.Compared with other methods of generating HLB,this scheme is extraordinarily simple in principle and can be utilized experimentally to construct a light trap in atomic fountain for convenience.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029)。
文摘We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
基金Project supported by the National Natural Science Foundation of China (Grant No.60977068)the Foundations of the State Key Laboratory for Transient Optical and Photonic Technology of Chinese Academy of Sciences (Grant No.SKL ST200912)
文摘We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301801)the National Natural Science Foundation of China(Grant Nos.10974039,11047153,10904027,61008039,and 11104049)+1 种基金the Doctoral Program of Higher Education of China(Grant No.20102302120009)the Fundamental Research Funds for the Central Universities of China(Grant No.2009038)
文摘A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerre Gaussian (LG) beam and the topological charge of the HA. The obtained spiraling Bessel beams have an LG type of modulation along their propagation direction and exhibit annihilation-reconstruction properties. Theoretical analysis is presented, including that of the stability, propagation distance, topological charge, and spiraling dynamic characteristics. The mathematical and numerical results show that the propagation distance and helical revolution of the spiraling Bessel beams can be controlled through choosing appropriate radius of the HA.
基金supported by the National Natural Science Foundation of China(No.11974314).
文摘On the basis of the stationary phase principle,we construct a family of shaping nondiffracting structured caustic beams with the desired morphology.First,the analytical formula of a nondiffracting astroid caustic is derived theoretically using the stationary phase method.Then,several types of typical desired caustics with different shapes are numerically simulated using the obtained formulas.Hence,the key optical structure and propagation characteristics of nondiffracting caustic beams are investigated.Finally,a designed phase plate and an axicon are used to generate the target light field.The experimental results confirm the theoretical prediction.Compared with the classical method,the introduced method for generating nondiffracting caustic beams is high in light-energy utilization;hence,it is expected to be applied conveniently to scientific experiments.
文摘Since Durnin reported the first experiment of Bessel beams, the related researchwork has developed extensively because of their 'nondiffracting' property andinteresting potential applications. It was shown that nearly nondiffracting Besselbeams can be realized experimentally by using various methods, such as an annularslit system, holographic amplification, an F-P interferometer, axicon and refractingsystem. This note presents the investigation results of the authors on nondiffractingBessel beams with finite beam width, i.e. beams limited by an aperture. Experimentshave been performed to illustrate the advantages of generating Bessel beams with anaxicon. A detailed study of the axial intensity and maximum nondiffracting range ofBessel beams vs. aperture size, and the conversion efficiency of the axicon as a Besselbeam convertor has been given. Within the experimental errors the result are ingood agreement with the theory.
基金This work was supported by the National Natural Science Foundation of China (No. 60008002)the Key Oriental Project of Chinese Academy of Sciences (KGCX_2-SW-110)the Shanghai Optical-Tech Special Project (01DJGK015).
文摘A novel method to generate a collimated hollow-laser-beam (HLB) by only a single axicon is proposed. With some reasonable assumptions, the radial light intensity distribution is calculated in detail by diffraction integral theory.The result of numerical simulation shows that this method is valid.Compared with other methods of generating HLB,this scheme is extraordinarily simple in principle and can be utilized experimentally to construct a light trap in atomic fountain for convenience.