Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution a...Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution and casing eccentricity in horizontal wells often complicates the accurate evaluation of cement azimuthal density.In this regard,this paper proposes an algorithm to calculate the cement azimuthal density in horizontal wells using a multi-detector gamma-ray detection system.The spatial dynamic response functions are simulated to obtain the influence of cement density on gamma-ray counts by the perturbation theory,and the contribution of cement density in six sectors to the gamma-ray recorded by different detectors is obtained by integrating the spatial dynamic response functions.Combined with the relationship between gamma-ray counts and cement density,a multi-parameter calculation equation system is established,and the regularized Newton iteration method is employed to invert casing eccentricity and cement azimuthal density.This approach ensures the stability of the inversion process while simultaneously achieving an accuracy of 0.05 g/cm^(3) for the cement azimuthal density.This accuracy level is ten times higher compared to density accuracy calculated using calibration equations.Overall,this algorithm enhances the accuracy of cement azimuthal density evaluation,provides valuable technical support for the monitoring of cement azimuthal density in the oil and gas industry.展开更多
Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation fr...Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation from azimuthal elastic impedance(AEI)difference using singular value decomposition(SVD).Based on Hudson's model,we first derive the AEI equation containing fracture density in HTI media,and then obtain basis functions and singular values from the normalized AEI difference utilizing SVD.Analysis shows that the basis function changing with azimuth is related to fracture orientation,fracture density is the linearly weighted sum of singular values,and the first singular value contributes the most to fracture density.Thus,we develop an SVD-based fracture density and orientation inversion approach constrained by smooth prior elastic parameters.Synthetic example shows that fracture density and orientation can be stably estimated,and the correlation coefficient between the true value and the estimated fracture density is above 0.85 even when an S/N ratio of 2.Field data example shows that the estimated fracture orientation is consistent with the interpretation of image log data,and the estimated fracture density reliably indicates fractured gas-bearing reservoir,which could help to guide the exploration and development of fractured reservoirs.展开更多
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(41974127,42174147).References。
文摘Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution and casing eccentricity in horizontal wells often complicates the accurate evaluation of cement azimuthal density.In this regard,this paper proposes an algorithm to calculate the cement azimuthal density in horizontal wells using a multi-detector gamma-ray detection system.The spatial dynamic response functions are simulated to obtain the influence of cement density on gamma-ray counts by the perturbation theory,and the contribution of cement density in six sectors to the gamma-ray recorded by different detectors is obtained by integrating the spatial dynamic response functions.Combined with the relationship between gamma-ray counts and cement density,a multi-parameter calculation equation system is established,and the regularized Newton iteration method is employed to invert casing eccentricity and cement azimuthal density.This approach ensures the stability of the inversion process while simultaneously achieving an accuracy of 0.05 g/cm^(3) for the cement azimuthal density.This accuracy level is ten times higher compared to density accuracy calculated using calibration equations.Overall,this algorithm enhances the accuracy of cement azimuthal density evaluation,provides valuable technical support for the monitoring of cement azimuthal density in the oil and gas industry.
基金sponsorship of the National Natural Science Foundation of China(41674130,U19B2008)the Postgraduate Innovation Project in China University of Petroleum(East China)(YCX2021016)for their funding this research。
文摘Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation from azimuthal elastic impedance(AEI)difference using singular value decomposition(SVD).Based on Hudson's model,we first derive the AEI equation containing fracture density in HTI media,and then obtain basis functions and singular values from the normalized AEI difference utilizing SVD.Analysis shows that the basis function changing with azimuth is related to fracture orientation,fracture density is the linearly weighted sum of singular values,and the first singular value contributes the most to fracture density.Thus,we develop an SVD-based fracture density and orientation inversion approach constrained by smooth prior elastic parameters.Synthetic example shows that fracture density and orientation can be stably estimated,and the correlation coefficient between the true value and the estimated fracture density is above 0.85 even when an S/N ratio of 2.Field data example shows that the estimated fracture orientation is consistent with the interpretation of image log data,and the estimated fracture density reliably indicates fractured gas-bearing reservoir,which could help to guide the exploration and development of fractured reservoirs.