Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket ...Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality. The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI. The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV. Iron ion dissolution from the ZVI could buffer acidity in the reactor, the amount of which was related to the COD concentration. Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one. Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.展开更多
In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogeni...In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.展开更多
Azo dyes are commonly found as pollutants in wastewater from the textile industry,and can cause environmental problems because of their color and toxicity.The removal of a typical azo dye named C.I.Reactive Red 2(RR2...Azo dyes are commonly found as pollutants in wastewater from the textile industry,and can cause environmental problems because of their color and toxicity.The removal of a typical azo dye named C.I.Reactive Red 2(RR2) during low pressure ultraviolet(UV)/chlorine oxidation was investigated in this study.UV irradiation at 254 nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone.Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation.Experiments performed with nitrobenzene(NB)or benzoic acid(BA) as scavengers showed that radicals(especially OH) formed during UV/chlorine oxidation are important in the RR2 removal.Addition of HCO_3^- and Cl^- to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation.展开更多
基金supported by the National Basic Research Program of China (No. 2007CB407302)the Natural Science Foundation of China (No. 21177015)+2 种基金the New Century Excellent Talent Program of the Ministry of Education of China (No. NCET-10-028)the Fundamental Research Funds for the Central Universities of China (No.DUT11ZD108)the Program for Changjiang Scholars and Innovative Research Team at the University of China(No. IRT0813)
文摘Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality. The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI. The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV. Iron ion dissolution from the ZVI could buffer acidity in the reactor, the amount of which was related to the COD concentration. Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one. Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.
基金financially supported by the Ministry of Environmental Protection of the People's Republic of China (Major Science and Technology Program for Water Pollution Control and Treatment) (No. 2014ZX07204-005)the National Natural Science Foundation of China (Nos. 51222812, 31370157, 21407164, 51508551)+2 种基金the China Postdoctoral Science Foundation (No. 2015M580140)the National Science Foundation for Distinguished Young Scholars (No. 51225802)Hundred Talents Program of the Chinese Academy of Sciences (No. 29BR2013001)
文摘In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.
基金funded by the National High-tech R&D Program(863)of China(No.2013AA065205)the Shenzhen Science and Technology Innovation Commission(No.JSGG20140703145428318)the National Science Fund of China(No.51138006)
文摘Azo dyes are commonly found as pollutants in wastewater from the textile industry,and can cause environmental problems because of their color and toxicity.The removal of a typical azo dye named C.I.Reactive Red 2(RR2) during low pressure ultraviolet(UV)/chlorine oxidation was investigated in this study.UV irradiation at 254 nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone.Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation.Experiments performed with nitrobenzene(NB)or benzoic acid(BA) as scavengers showed that radicals(especially OH) formed during UV/chlorine oxidation are important in the RR2 removal.Addition of HCO_3^- and Cl^- to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation.