The conduct mechanism of the doped polymer is considered. In an asymmetrysystem composed of high polymer and doping conductive matte, chain or congeries framework will beformed between the conductive particles to impr...The conduct mechanism of the doped polymer is considered. In an asymmetrysystem composed of high polymer and doping conductive matte, chain or congeries framework will beformed between the conductive particles to improve the conductance characteristic. In thisprocession, the conductive particles interact to each other. In this paper, we describe theconductance of the doped polymer by Monte Carlo method. The results accord with the experimentsquite well. It can be concluded that there is an evident change of doped polymer from nonconductorto metal.展开更多
An increase in luminance of a polymer light-emitting diode(PLED) was obtained by fabricating a graded doping structure using a vacuum spray method. The small electron transport molecule, Tris(8-hydroxyquinolinato) alu...An increase in luminance of a polymer light-emitting diode(PLED) was obtained by fabricating a graded doping structure using a vacuum spray method. The small electron transport molecule, Tris(8-hydroxyquinolinato) aluminum(III)(Alq3), was graded dispersed along the film in the direction of growth in the hole transport polymer poly(3-hexylthiophene-2,5-diyl)(P3HT, regiorandom) layer of the PLED, despite being dissolved in the same organic solvent as the polymer. The PLED reported here, which is composed of a graded structure, emitted brighter light than PLEDs composed of pure polymer or of a blend of active layers prepared by spin coating and/or vacuum spray methods.展开更多
Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials...Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.展开更多
The optical properties of the pure polymer film and polymer films doped with Phenol Red dye at different concentrations were investigated. The films were prepared using the casting technique. Poly (methyl-methacrylate...The optical properties of the pure polymer film and polymer films doped with Phenol Red dye at different concentrations were investigated. The films were prepared using the casting technique. Poly (methyl-methacrylate) (PMMA) polymer was doped with the Phenol Red dye dissolved in a mixture of chloroform and little quantity of methanol, used as suitable solvent for both the dye and the polymer. The spectral absorption measurements of these films were carried out at different dye concentrations using UV-Vis double-beam spectrophotometer in the wavelength range 300 - 800 nm. The optical parameters of the prepared Phenol Red dye doped polymer films, absorption coefficient (α), extinction coefficient (κ), refractive index (n), optical and electrical conductivities (σ<sub>opt</sub> and σ<sub>elect</sub>), and optical energy band gap (E<sub>g</sub>), were determined. The results showed that the Phenol Red dye doped polymer film is a good candidate for photonic applications such as, solar cells, optical sensors, and other photonic devices.展开更多
1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) was successfully introduced into the polymer multilayer films by means of Langmuir-Blodgett (LB) technique. Results of UV-VIS spectra and X-ray diffraction showed that the unifo...1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) was successfully introduced into the polymer multilayer films by means of Langmuir-Blodgett (LB) technique. Results of UV-VIS spectra and X-ray diffraction showed that the uniform films had a layer structure similar to the superlattice of organic multiple quantum wells. The electroluminescence (EL) devices fabricated from the doped polymer LB films emitted blue light. Compared with the casting films, the photoluminescence (PL) and EL spectra showed that the exciton energy shifts to higher and the half-width of the emission peak becomes narrower due to exciton confinement effect.展开更多
Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aque...Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aqueous solution. The effects of La^3+ ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the La^3+ content plays an essential role in affecting the photocatalytic activity of the La^3+-doped TiO2 and the optimum content of La^3+-doped is 1.0 wt.%. The photocatalytic activity of the samples with La^3+-doped TiO2 is higher than that of pure TiO2 in the treatment of AO7 wastewater. The photodegradation effect of AO7 effluent is the best by means of La^3+-doped TiO2 with 1.0% La^3+.展开更多
Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon e...Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon electrode were fabricated and compared with the redox type capacitors (PLi/PLi) based on two uniformly Li-doping polyaniline electrodes. The electrochemical performances of the two types of supercapacitors were characterized in non-aqueous electrolyte. PLi/C supercapacitors have a wider effective energy storage potential range and a higher upper potential. At the same time, the PLi/C supercapacitor exhibits a specific capacity of 120.93 F/g at initial discharge and retains 80% after 500 cycles. The ohmic internal resistance (REs) of PLi/C supercapacitor is 5.0 Ω, which is smaller than that of PLi/PLi capacitor (5.5 Ω). Moreover, it can be seen that EtgNBF4 organic solution is more suitable for using as organic electrolyte of PLi/C capacitor compared with organic solution containing LiPFr.展开更多
Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability an...Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.展开更多
Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown fi...Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and 3-omega method, respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700 ℃ and 1000 ℃. The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity. A 67% enhancement in thermal conductivity has been achieved for the samples grown at 700 ℃, demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature.展开更多
The formation of submicrometer voids within Ce(DBM)3Phen doped poly(methyl methacrylate)(PMMA) was reported under multiphoton absorption excited by an infrared laser beam. The absorption spectra, photoluminescence and...The formation of submicrometer voids within Ce(DBM)3Phen doped poly(methyl methacrylate)(PMMA) was reported under multiphoton absorption excited by an infrared laser beam. The absorption spectra, photoluminescence and electron spin resonance (ESR) spectra before and after femtosecond laser irradiation were discussed. An ultrashort-pulsed laser beam with a pulse width of 200 femtosecond at a wavelength of 800 nm was focused into doped PMMA. The large changes in refractive index and the fluorescence associated with a void allowed conventional optical microscopy and reflection-type confocal microscopy to be used as detection methods. Voids could be arranged in a three-dimensional multilayered structure for high-density optical data storage. The separation of adjacent bits and layers were 4 and 16 μm, respectively.展开更多
In this work, the influence of a small-molecule material, tris(8-hydroxyquinoline) aluminum (Alq3), on bulk heterojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly...In this work, the influence of a small-molecule material, tris(8-hydroxyquinoline) aluminum (Alq3), on bulk heterojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly(2-methoxy-5-(2- ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). By doping Alq3 into MEH-PPV:PCBM solution, the number of MEH-PPV excitons can be effectively increased due to the energy transfer from Alq3 to MEH-PPV, which probably induces the increase of photocurrent generated by excitons dissociation. However, the low carrier mobility of Alq3 is detrimental to the efficient charge transport, thereby blocking the charge collection by the respective electrodes. The balance between photon absorption and charge transport in the active layer plays a key role in the performance of PSCs. For the case of 5 wt.% Alq3 doping, the device performance is deteriorated rather than improved as compared with that of the undoped device. On the other hand, we adopt Alq3 as a buffer layer instead of commonly used LiF. All the photovoltaic parameters are improved, yielding an 80% increase in power conversion efficiency (PCE) at the optimum thickness (1 nm) as compared with that of the device without any buffer layer. Even for the 5 wt.% Alq3 doped device, the PCE has a slight enhancement compared with that of the standard device after modification with 1 nm (or 2 nm) thermally evaporated Alq3. The performance deterioration of Alq3-doped devices can be explained by the low solubility of Alq3, which probably deteriorates the bicontinuous D-A network morphology; while the performance improvement of the devices with Alq3 as a buffer layer is attributed to the increased light harvesting, as well as blocking the hole leakage from MEH-PPV to the aluminum (Al) electrode due to the lower highest occupied molecular orbital (HOMO) level of Alq3 compared with that of MEH-PPV.展开更多
The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20℃ to 50℃. It is found that there is a peak value of photoinduced birefringence in the temperature dependen...The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20℃ to 50℃. It is found that there is a peak value of photoinduced birefringence in the temperature dependence of the photoinduced birefringence under a certain pumping intensity. With the pump light in 90mW/cm^2, the peak value of the photoinduced birefringence appeared at about 0℃ C. The effect of temperature on the photoinduced birefringence is discussed using the competition mechanism between the photoinduced reorientation and the thermal random motion.展开更多
Synthesis of new carbon nanostructures with tunable properties is vital for precisely regulating electrochemical performance in the wide applications.Herein,we report a novel approach for the oxidative polymerization ...Synthesis of new carbon nanostructures with tunable properties is vital for precisely regulating electrochemical performance in the wide applications.Herein,we report a novel approach for the oxidative polymerization of N-and P-bearing copolymers from the self-assembly of three different monomers(aniline,pyrrole,and phytic acid),and further prepare the respective carbon nanostructures with relatively consistent N dopant(6.2%–8.0%,atom)and varying P concentrations(0.4%–2.8%,atom)via controllable pyrolysis.The impacts of phytic acid addition on the compositional,structural,and morphological evolution of the copolymers and the resulting nanocarbons are well studied through a spectrum of characterizations including N2 sorption,Fourier transform infrared spectroscopy,gel permeation chromatograph,scanning/transmission electron microscopy,and X-ray photoelectron spectroscopy.Gradual fragmentation of the nanosphere structures is evidenced with increasing addition of phytic acid,leading to different nanostructures from hollow nanospheres to 3D aggregates.Nanocarbons decorated with N and P dopants from pyrolysis are further utilized as anode materials in lithium-ion batteries,demonstrating enhanced electrochemical performance,i.e.,a reversible capacity of 380 mAhg^(-1)at 2 Ag^(-1)for NPC-0.5 during 200 cycles.The superior performance originates from the balanced porosity,and appropriate concentrations of P and pyrrolic N,thus pointing the direction for designing high-performance anode materials.展开更多
Organic thermoelectric(OTE)materials have been regarded as a potential candidate to harvest waste heat from complex,low temperature surfaces of objects and convert it into electricity.Recently,n-type conjugated polyme...Organic thermoelectric(OTE)materials have been regarded as a potential candidate to harvest waste heat from complex,low temperature surfaces of objects and convert it into electricity.Recently,n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their ptype counterpart.In this review,we discuss aspects that affect the performance of n-type OTEs,and further focus on the effect of planarity of backbone on the doping efficiency and eventually the TE performance.We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation.In the outlook part,we conclude forementioned devotions and point out new possibility that may promote the future development of this field.展开更多
We prepared conducting polyaniline (PAn) co-doped with sulfosalicylic acid (SSA) and dodecylbenzoyl sultonic acid (DBSA) in micro-emulsive polymerization, and studied its charge transport behaviors based on the ...We prepared conducting polyaniline (PAn) co-doped with sulfosalicylic acid (SSA) and dodecylbenzoyl sultonic acid (DBSA) in micro-emulsive polymerization, and studied its charge transport behaviors based on the measurement of its electrical conductivity in the temperature range between 203 K and 298 K. The conductivity was found to increase with temperature, similar to the case in semiconductors. Analyzing the experimental data with three models, namely the charge-energy-limitedtunneling model, Kivelson model and the three-dimensional variable range hopping (3D-VRH) model demonstrated that these models all describe well the charge transport behaviors of PAn co-doped with SSA and DBSA within the mentioned temperature range. From calculation with the 3D-VRH model, the hopping distance of the conducting PAn is obviously larger than its localization length. The PAn doped with SSA and DBSA enjoys desirable crystallinity due to the co-doping of two functional sulfonic acids. The macroscopic conductivity may correspond to three-dimensional transport in the network of the bundles, and the metallic islands may be attributed to quasi-one-dimensional bundles.展开更多
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex...We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.展开更多
Photocatalytic activity of doped polyaniline nanopowders with different molar ratio of An/O (aniline^oxidizer) has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue....Photocatalytic activity of doped polyaniline nanopowders with different molar ratio of An/O (aniline^oxidizer) has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that doped PANI (polyaniline) nanopowders have the particles size of 30-50 nm with the specific surface area of 20-35 m2.g"~. It was found that PANI photocatalytic activity essentially depends on molar ratio of An/O and adsorption interactions between the dye molecules and catalytic active centers on PANI surface and these interactions are greatly affected by pH of the solution 9.2. An optimum of the synergetic effect is found for an initial molar ratio of aniline to oxidizer equal to 0.8.展开更多
Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the dop...Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs.展开更多
Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the devel...Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the development of such materials remains in its infancy,underscoring the importance of exploiting novel and efficient light-responsive RTP molecules.In this work,three phenothiazine derivatives of TPA-PTZ,TPA-2PTZ,and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction.By embedding these molecules as RTP guests into polymethyl methacrylate(PMMA)matrix,photo-induced RTP properties were realized.Upon sustained UV irradiation,there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%.Remarkably,these materials exhibit superior alongside robust light and thermal stability,maintaining high phosphorescence intensity even after prolonged UV exposure(irradiation for>200 s by a 365 nm UV lamp with the power of 500μW·cm-2)or at higher temperature up to 75℃.The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption,anti-counterfeiting,and advanced optical materials.展开更多
文摘The conduct mechanism of the doped polymer is considered. In an asymmetrysystem composed of high polymer and doping conductive matte, chain or congeries framework will beformed between the conductive particles to improve the conductance characteristic. In thisprocession, the conductive particles interact to each other. In this paper, we describe theconductance of the doped polymer by Monte Carlo method. The results accord with the experimentsquite well. It can be concluded that there is an evident change of doped polymer from nonconductorto metal.
基金supported by the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization(NEDO)of Japan
文摘An increase in luminance of a polymer light-emitting diode(PLED) was obtained by fabricating a graded doping structure using a vacuum spray method. The small electron transport molecule, Tris(8-hydroxyquinolinato) aluminum(III)(Alq3), was graded dispersed along the film in the direction of growth in the hole transport polymer poly(3-hexylthiophene-2,5-diyl)(P3HT, regiorandom) layer of the PLED, despite being dissolved in the same organic solvent as the polymer. The PLED reported here, which is composed of a graded structure, emitted brighter light than PLEDs composed of pure polymer or of a blend of active layers prepared by spin coating and/or vacuum spray methods.
基金Financial support from National Natural Science Foundation of China(Nos.51702056 and 51772135)the Ministry of Education of China(6141A02022516)China Postdoctoral Science Foundation(2017M622902 and 2019T120790).
文摘Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.
文摘The optical properties of the pure polymer film and polymer films doped with Phenol Red dye at different concentrations were investigated. The films were prepared using the casting technique. Poly (methyl-methacrylate) (PMMA) polymer was doped with the Phenol Red dye dissolved in a mixture of chloroform and little quantity of methanol, used as suitable solvent for both the dye and the polymer. The spectral absorption measurements of these films were carried out at different dye concentrations using UV-Vis double-beam spectrophotometer in the wavelength range 300 - 800 nm. The optical parameters of the prepared Phenol Red dye doped polymer films, absorption coefficient (α), extinction coefficient (κ), refractive index (n), optical and electrical conductivities (σ<sub>opt</sub> and σ<sub>elect</sub>), and optical energy band gap (E<sub>g</sub>), were determined. The results showed that the Phenol Red dye doped polymer film is a good candidate for photonic applications such as, solar cells, optical sensors, and other photonic devices.
基金This Project is financially supported by the National Natural Science Foundation of China
文摘1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) was successfully introduced into the polymer multilayer films by means of Langmuir-Blodgett (LB) technique. Results of UV-VIS spectra and X-ray diffraction showed that the uniform films had a layer structure similar to the superlattice of organic multiple quantum wells. The electroluminescence (EL) devices fabricated from the doped polymer LB films emitted blue light. Compared with the casting films, the photoluminescence (PL) and EL spectra showed that the exciton energy shifts to higher and the half-width of the emission peak becomes narrower due to exciton confinement effect.
基金[This work was financially supported by the Science and Technology Department Foundation of Hunan Province (No. 02JJY2015), and the Doctorate Foundation of Changsha University of Science and Technology (No. 04xxrc037).]
文摘Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aqueous solution. The effects of La^3+ ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the La^3+ content plays an essential role in affecting the photocatalytic activity of the La^3+-doped TiO2 and the optimum content of La^3+-doped is 1.0 wt.%. The photocatalytic activity of the samples with La^3+-doped TiO2 is higher than that of pure TiO2 in the treatment of AO7 wastewater. The photodegradation effect of AO7 effluent is the best by means of La^3+-doped TiO2 with 1.0% La^3+.
基金Project(2008AA03Z207) supported by the National High-Tech Research and Development Program of China
文摘Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon electrode were fabricated and compared with the redox type capacitors (PLi/PLi) based on two uniformly Li-doping polyaniline electrodes. The electrochemical performances of the two types of supercapacitors were characterized in non-aqueous electrolyte. PLi/C supercapacitors have a wider effective energy storage potential range and a higher upper potential. At the same time, the PLi/C supercapacitor exhibits a specific capacity of 120.93 F/g at initial discharge and retains 80% after 500 cycles. The ohmic internal resistance (REs) of PLi/C supercapacitor is 5.0 Ω, which is smaller than that of PLi/PLi capacitor (5.5 Ω). Moreover, it can be seen that EtgNBF4 organic solution is more suitable for using as organic electrolyte of PLi/C capacitor compared with organic solution containing LiPFr.
基金supported by the National Natural Science Foundation of China(Grant No.21905294)the Shanghai Sailing Program。
文摘Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60976061 and 11028409)
文摘Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and 3-omega method, respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700 ℃ and 1000 ℃. The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity. A 67% enhancement in thermal conductivity has been achieved for the samples grown at 700 ℃, demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature.
基金Project supported by the Shanxi (20072194 and 20072185) Provincial Youth Technology Research Foundation of China
文摘The formation of submicrometer voids within Ce(DBM)3Phen doped poly(methyl methacrylate)(PMMA) was reported under multiphoton absorption excited by an infrared laser beam. The absorption spectra, photoluminescence and electron spin resonance (ESR) spectra before and after femtosecond laser irradiation were discussed. An ultrashort-pulsed laser beam with a pulse width of 200 femtosecond at a wavelength of 800 nm was focused into doped PMMA. The large changes in refractive index and the fluorescence associated with a void allowed conventional optical microscopy and reflection-type confocal microscopy to be used as detection methods. Voids could be arranged in a three-dimensional multilayered structure for high-density optical data storage. The separation of adjacent bits and layers were 4 and 16 μm, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60978060,10804006,10974013 and 10774013)the Research Fund for the Doctoral Program of Higher Education,China (Grant Nos. 20090009110027 and 20070004024)+5 种基金the Research Fund for the Youth Scholars of the Doctoral Program of Higher Education,China (Grant No. 20070004031)the Beijing Nova Program (Grant No. 2007A024)the Beijing Municipal Natural Science Foundation (Grant No. 1102028)the National Natural Science Funds for Distinguished Young Scholar (Grant No. 60825407)the Beijing Municipal Science & Technology Commission (Grant No. Z090803044009001)the National Basic Research Program of China (Grant No. 2010CB327705)
文摘In this work, the influence of a small-molecule material, tris(8-hydroxyquinoline) aluminum (Alq3), on bulk heterojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly(2-methoxy-5-(2- ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). By doping Alq3 into MEH-PPV:PCBM solution, the number of MEH-PPV excitons can be effectively increased due to the energy transfer from Alq3 to MEH-PPV, which probably induces the increase of photocurrent generated by excitons dissociation. However, the low carrier mobility of Alq3 is detrimental to the efficient charge transport, thereby blocking the charge collection by the respective electrodes. The balance between photon absorption and charge transport in the active layer plays a key role in the performance of PSCs. For the case of 5 wt.% Alq3 doping, the device performance is deteriorated rather than improved as compared with that of the undoped device. On the other hand, we adopt Alq3 as a buffer layer instead of commonly used LiF. All the photovoltaic parameters are improved, yielding an 80% increase in power conversion efficiency (PCE) at the optimum thickness (1 nm) as compared with that of the device without any buffer layer. Even for the 5 wt.% Alq3 doped device, the PCE has a slight enhancement compared with that of the standard device after modification with 1 nm (or 2 nm) thermally evaporated Alq3. The performance deterioration of Alq3-doped devices can be explained by the low solubility of Alq3, which probably deteriorates the bicontinuous D-A network morphology; while the performance improvement of the devices with Alq3 as a buffer layer is attributed to the increased light harvesting, as well as blocking the hole leakage from MEH-PPV to the aluminum (Al) electrode due to the lower highest occupied molecular orbital (HOMO) level of Alq3 compared with that of MEH-PPV.
基金Supported by the National Natural Science Foundation of China under Grant No 10675083, and the Applied Materials Shanghai Research and Development Fund (0416).
文摘The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20℃ to 50℃. It is found that there is a peak value of photoinduced birefringence in the temperature dependence of the photoinduced birefringence under a certain pumping intensity. With the pump light in 90mW/cm^2, the peak value of the photoinduced birefringence appeared at about 0℃ C. The effect of temperature on the photoinduced birefringence is discussed using the competition mechanism between the photoinduced reorientation and the thermal random motion.
基金support from Zhejiang Normal University(YS304320035,YS304320036)the National Key Research and Development Program of China(2016YFB0100100,2016YFA0200200)+5 种基金the National Natural Science Foundation of China(51872283,22075279,21805273,22005297,22005298)the Liaoning Revitalization Talents Program(XLYC1807153)the Funds for Local Science and Technology Development by the Central Government of Liaoning Province(2021JH6/10500112)Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915)DICP(DICP ZZBS201708,DICP ZZBS201802,DICP I2020032).
文摘Synthesis of new carbon nanostructures with tunable properties is vital for precisely regulating electrochemical performance in the wide applications.Herein,we report a novel approach for the oxidative polymerization of N-and P-bearing copolymers from the self-assembly of three different monomers(aniline,pyrrole,and phytic acid),and further prepare the respective carbon nanostructures with relatively consistent N dopant(6.2%–8.0%,atom)and varying P concentrations(0.4%–2.8%,atom)via controllable pyrolysis.The impacts of phytic acid addition on the compositional,structural,and morphological evolution of the copolymers and the resulting nanocarbons are well studied through a spectrum of characterizations including N2 sorption,Fourier transform infrared spectroscopy,gel permeation chromatograph,scanning/transmission electron microscopy,and X-ray photoelectron spectroscopy.Gradual fragmentation of the nanosphere structures is evidenced with increasing addition of phytic acid,leading to different nanostructures from hollow nanospheres to 3D aggregates.Nanocarbons decorated with N and P dopants from pyrolysis are further utilized as anode materials in lithium-ion batteries,demonstrating enhanced electrochemical performance,i.e.,a reversible capacity of 380 mAhg^(-1)at 2 Ag^(-1)for NPC-0.5 during 200 cycles.The superior performance originates from the balanced porosity,and appropriate concentrations of P and pyrrolic N,thus pointing the direction for designing high-performance anode materials.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.21D110637)the National Natural Science Foundation of China(Grant No.52173156)+1 种基金the Science and Technology Commission of Shanghai Municipality,China(Grant No.20JC1414900)the Chinese Academy of Sciences(Faculty Consultation and Evaluation Project 2020-ZW07-A-017)。
文摘Organic thermoelectric(OTE)materials have been regarded as a potential candidate to harvest waste heat from complex,low temperature surfaces of objects and convert it into electricity.Recently,n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their ptype counterpart.In this review,we discuss aspects that affect the performance of n-type OTEs,and further focus on the effect of planarity of backbone on the doping efficiency and eventually the TE performance.We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation.In the outlook part,we conclude forementioned devotions and point out new possibility that may promote the future development of this field.
文摘We prepared conducting polyaniline (PAn) co-doped with sulfosalicylic acid (SSA) and dodecylbenzoyl sultonic acid (DBSA) in micro-emulsive polymerization, and studied its charge transport behaviors based on the measurement of its electrical conductivity in the temperature range between 203 K and 298 K. The conductivity was found to increase with temperature, similar to the case in semiconductors. Analyzing the experimental data with three models, namely the charge-energy-limitedtunneling model, Kivelson model and the three-dimensional variable range hopping (3D-VRH) model demonstrated that these models all describe well the charge transport behaviors of PAn co-doped with SSA and DBSA within the mentioned temperature range. From calculation with the 3D-VRH model, the hopping distance of the conducting PAn is obviously larger than its localization length. The PAn doped with SSA and DBSA enjoys desirable crystallinity due to the co-doping of two functional sulfonic acids. The macroscopic conductivity may correspond to three-dimensional transport in the network of the bundles, and the metallic islands may be attributed to quasi-one-dimensional bundles.
文摘We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.
文摘Photocatalytic activity of doped polyaniline nanopowders with different molar ratio of An/O (aniline^oxidizer) has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that doped PANI (polyaniline) nanopowders have the particles size of 30-50 nm with the specific surface area of 20-35 m2.g"~. It was found that PANI photocatalytic activity essentially depends on molar ratio of An/O and adsorption interactions between the dye molecules and catalytic active centers on PANI surface and these interactions are greatly affected by pH of the solution 9.2. An optimum of the synergetic effect is found for an initial molar ratio of aniline to oxidizer equal to 0.8.
基金Supported by the National Natural Science Foundation of China under Grant Nos 21174016 and 11474017the Doctoral Program of Higher Education of China under Grant No 20120009110031
文摘Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs.
文摘Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the development of such materials remains in its infancy,underscoring the importance of exploiting novel and efficient light-responsive RTP molecules.In this work,three phenothiazine derivatives of TPA-PTZ,TPA-2PTZ,and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction.By embedding these molecules as RTP guests into polymethyl methacrylate(PMMA)matrix,photo-induced RTP properties were realized.Upon sustained UV irradiation,there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%.Remarkably,these materials exhibit superior alongside robust light and thermal stability,maintaining high phosphorescence intensity even after prolonged UV exposure(irradiation for>200 s by a 365 nm UV lamp with the power of 500μW·cm-2)or at higher temperature up to 75℃.The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption,anti-counterfeiting,and advanced optical materials.