In CAGD, the Said-Ball representation for a polynomial curve has two advantagesover the B′ezier representation, since the degrees of Said-Ball basis are distributed in a step type.One advantage is that the recursive ...In CAGD, the Said-Ball representation for a polynomial curve has two advantagesover the B′ezier representation, since the degrees of Said-Ball basis are distributed in a step type.One advantage is that the recursive algorithm of Said-Ball curve for evaluating a polynomialcurve runs twice as fast as the de Casteljau algorithm of B′ezier curve. Another is that theoperations of degree elevation and reduction for a polynomial curve in Said-Ball form are simplerand faster than in B′ezier form. However, Said-Ball curve can not exactly represent conics whichare usually used in aircraft and machine element design. To further extend the utilizationof Said-Ball curve, this paper deduces the representation theory of rational cubic and quarticSaid-Ball conics, according to the necessary and su?cient conditions for conic representation inrational low degree B′ezier form and the transformation formula from Bernstein basis to Said-Ballbasis. The results include the judging method for whether a rational quartic Said-Ball curve is aconic section and design method for presenting a given conic section in rational quartic Said-Ballform. Many experimental curves are given for confirming that our approaches are correct ande?ective.展开更多
In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizin...In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizing one of the boundary curves.The reparameterization function is the solution of an algebraic equation.For the relevant case of cubic or cubic spline curves,this equation is quartic at most,quadratic if the curves are B´ezier or splines and lie on parallel planes,and hence it may be solved either by standard analytical or numerical methods.展开更多
基金Supported by the National Natural Science Foundations of China(61070065, 60933007)the Zhejiang Provincial Natural Science Foundation of China(Y6090211)
文摘In CAGD, the Said-Ball representation for a polynomial curve has two advantagesover the B′ezier representation, since the degrees of Said-Ball basis are distributed in a step type.One advantage is that the recursive algorithm of Said-Ball curve for evaluating a polynomialcurve runs twice as fast as the de Casteljau algorithm of B′ezier curve. Another is that theoperations of degree elevation and reduction for a polynomial curve in Said-Ball form are simplerand faster than in B′ezier form. However, Said-Ball curve can not exactly represent conics whichare usually used in aircraft and machine element design. To further extend the utilizationof Said-Ball curve, this paper deduces the representation theory of rational cubic and quarticSaid-Ball conics, according to the necessary and su?cient conditions for conic representation inrational low degree B′ezier form and the transformation formula from Bernstein basis to Said-Ballbasis. The results include the judging method for whether a rational quartic Said-Ball curve is aconic section and design method for presenting a given conic section in rational quartic Said-Ballform. Many experimental curves are given for confirming that our approaches are correct ande?ective.
基金This work is partially supported by the Spanish Ministerio de Economiay Competitividad through research grant TRA2015-67788-P.
文摘In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizing one of the boundary curves.The reparameterization function is the solution of an algebraic equation.For the relevant case of cubic or cubic spline curves,this equation is quartic at most,quadratic if the curves are B´ezier or splines and lie on parallel planes,and hence it may be solved either by standard analytical or numerical methods.