This study focuses on the anisotropic Besov-Lions type spaces B^lp,θ(Ω;E0,E) associated with Banach spaces E0 and E. Under certain conditions, depending on l =(l1,l2,…,ln)and α=(α1,α2,…,αn),the most regu...This study focuses on the anisotropic Besov-Lions type spaces B^lp,θ(Ω;E0,E) associated with Banach spaces E0 and E. Under certain conditions, depending on l =(l1,l2,…,ln)and α=(α1,α2,…,αn),the most regular class of interpolation space Eα between E0 and E are found so that the mixed differential operators D^α are bounded and compact, from B^l+s p,θ(Ω;E0,E) to B^s p,θ(Ω;Eα).These results are applied to concrete vector-valued function spaces and to anisotropic differential-operator equations with parameters to obtain conditions that guarantee the uniform B separability with respect to these parameters. By these results the maximal B-regularity for parabolic Cauchy problem is obtained. These results are also applied to infinite systems of the quasi-elliptic partial differential equations and parabolic Cauchy problems with parameters to obtain sufficient conditions that ensure the same properties.展开更多
文摘This study focuses on the anisotropic Besov-Lions type spaces B^lp,θ(Ω;E0,E) associated with Banach spaces E0 and E. Under certain conditions, depending on l =(l1,l2,…,ln)and α=(α1,α2,…,αn),the most regular class of interpolation space Eα between E0 and E are found so that the mixed differential operators D^α are bounded and compact, from B^l+s p,θ(Ω;E0,E) to B^s p,θ(Ω;Eα).These results are applied to concrete vector-valued function spaces and to anisotropic differential-operator equations with parameters to obtain conditions that guarantee the uniform B separability with respect to these parameters. By these results the maximal B-regularity for parabolic Cauchy problem is obtained. These results are also applied to infinite systems of the quasi-elliptic partial differential equations and parabolic Cauchy problems with parameters to obtain sufficient conditions that ensure the same properties.