A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is ...A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.展开更多
The rejection sampling method is one of the most popular methods used in Monte Carlo methods. It turns out that the standard rejection method is closely related to the problem of quasi-Monte Carlo integration of chara...The rejection sampling method is one of the most popular methods used in Monte Carlo methods. It turns out that the standard rejection method is closely related to the problem of quasi-Monte Carlo integration of characteristic functions, whose accuracy may be lost due to the discontinuity of the characteristic functions. We proposed a B-splines smoothed rejection sampling method, which smoothed the characteristic function by B-splines smoothing technique without changing the integral quantity. Numerical experiments showed that the convergence rate of nearly O( N^-1 ) is regained by using the B-splines smoothed rejection method in importance sampling.展开更多
A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with redu...A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.展开更多
This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numer...This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numerical computation of Fokker-Planck equations. The modified cubic B-splines are used as set of basis functions in the differential quadrature to compute the weighting coefficients for the spatial derivatives, which reduces Fokker-Planck equation into system of first-order ordinary differential equations (ODEs), in time. The well known SSP-RK43 scheme is then applied to solve the resulting system of ODEs. The efficiency of proposed method has been confirmed by three examples having their exact solutions. This shows that MCB-DQM results are capable of achieving high accuracy. Advantage of the scheme is that it can be applied very smoothly to solve the linear or nonlinear physical problems, and a very less storage space is required which causes less accumulation of numerical errors.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10374119, and the 0ne-Hundred-Talents Project of Chinese Academy of Science. ACKN0WLEDGMENTS: We gratefully acknowledge Professors Ding Peizhu and Liu Xueshen for their hospitality and help with the symplectic al- gorithm.
文摘A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.
文摘The rejection sampling method is one of the most popular methods used in Monte Carlo methods. It turns out that the standard rejection method is closely related to the problem of quasi-Monte Carlo integration of characteristic functions, whose accuracy may be lost due to the discontinuity of the characteristic functions. We proposed a B-splines smoothed rejection sampling method, which smoothed the characteristic function by B-splines smoothing technique without changing the integral quantity. Numerical experiments showed that the convergence rate of nearly O( N^-1 ) is regained by using the B-splines smoothed rejection method in importance sampling.
基金the National Natural Science Foundation of China (No.59975057).
文摘A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.
文摘This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numerical computation of Fokker-Planck equations. The modified cubic B-splines are used as set of basis functions in the differential quadrature to compute the weighting coefficients for the spatial derivatives, which reduces Fokker-Planck equation into system of first-order ordinary differential equations (ODEs), in time. The well known SSP-RK43 scheme is then applied to solve the resulting system of ODEs. The efficiency of proposed method has been confirmed by three examples having their exact solutions. This shows that MCB-DQM results are capable of achieving high accuracy. Advantage of the scheme is that it can be applied very smoothly to solve the linear or nonlinear physical problems, and a very less storage space is required which causes less accumulation of numerical errors.