Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been...Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been investigated. Crystallization of Si-B-O-N ceramics occurred at about 1400癈. Density, elastic modulus, and flexural strength of the ceramics increased with the increasing sintering temperatures, and reached to their maximum values at 1600癈. By contrast, hardness and frac-ture toughness of the ceramics monotonically changed with increasing sintering temperatures. Hardness decreased, while the fracture toughness increased. The principal toughening mechanisms including crack deflection, crack bridging and plate grain pulling-out effects are discussed展开更多
基金This research is supported by the National Natural Science Foundation of China, under grant No. 50072002.
文摘Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been investigated. Crystallization of Si-B-O-N ceramics occurred at about 1400癈. Density, elastic modulus, and flexural strength of the ceramics increased with the increasing sintering temperatures, and reached to their maximum values at 1600癈. By contrast, hardness and frac-ture toughness of the ceramics monotonically changed with increasing sintering temperatures. Hardness decreased, while the fracture toughness increased. The principal toughening mechanisms including crack deflection, crack bridging and plate grain pulling-out effects are discussed