It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius fo...It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.展开更多
This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as th...This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as the solver of physical unknown(SGTHB-ITO-MMC).By applying properly basis graded constraints to the hierarchical mesh of truncated hierarchical B-splines(THB),the convergence and robustness of the SGTHB-ITOMMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated,due to the improved accuracy around the explicit structural boundaries.Moreover,an efficient computational method is developed for the topological description functions(TDF)ofMMC under the admissible hierarchicalmesh,which consists of reducing the dimensionality strategy for design space and the locally computing strategy for hierarchical mesh.We apply the above SGTHB-ITO-MMC with improved efficiency to a series of 2D and 3Dcompliance design problems.The numerical results show that the proposed SGTHB-ITO-MMC method outperforms the traditional THB-ITO-MMCmethod in terms of convergence rate and efficiency.Therefore,the proposed SGTHB-ITO-MMC is an effective way of solving topology optimization(TO)problems.展开更多
Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing ...Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing the problem of B-splinefitting for cam pitch curves.Considering that the B-spline curve needs to meet the motion law of the follower to approximate the pitch curve,we use the radial error to quantify the effects of thefitting B-spline curve and the pitch curve.The problem thus boils down to solving a difficult global optimization problem tofind the numbers and positions of the control points or data points of the B-spline curve such that the cumulative radial error between thefitting curve and the original curve is minimized,and this problem is attempted in this paper with a double deep Q-network(DDQN)reinforcement learning(RL)algorithm with data points traceability.Specifically,the RL envir-onment,actions set and current states set are designed to facilitate the search of the data points,along with the design of the reward function and the initialization of the neural network.The experimental results show that when the angle division value of the actions set isfixed,the proposed algorithm can maximize the number of data points of the B-spline curve,and accurately place these data points to the right positions,with the minimum average of radial errors.Our work establishes the theoretical foundation for studying splinefitting using the RL method.展开更多
The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc...The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
There are very few researches on the shape standard curve currently,and they merely remain on the level of description of the general concept and production experiences,lacking of the in-depth theoretical analysis,and...There are very few researches on the shape standard curve currently,and they merely remain on the level of description of the general concept and production experiences,lacking of the in-depth theoretical analysis,and the concrete principle,method and steps for determining the shape standard curve are not put forward,therefore,they are not applicable in industrial production.This is the weakest spot in the research on the basic shape theory.In this paper,the basic shape standard curve and the transverse distribution curve of the exit thickness are attained with stepwise optimization,which is based on the theoretical calculation method of the shape standard curve of strip mills proposed by authors.By calculating the shape discrimination model and the shape forecast model separately,the simultaneous iterative calculation by the previous method is avoided,and the speed and stability of calculation are improved.The compensation models of the transverse temperature difference of the strip,the shape detection roller deflection and the shape of the strip coil are established,respectively,meantime,the basic shape standard curves are compensated,and the relatively perfect theoretical establishment method of the shape standard curve is formed.The simulation and calculation are done on a 1 220 mm five-stand cold strip tandem mill.The simulation and calculation result shows that the principle,method and steps for determining the shape standard curve are correct and feasible,and the correctness of theoretical analysis and calculation is verified.This paper proposes an idea and a method for the establishment of the shape standard curve in the rolling processes of cold strip mills,which develop the theory and model of the shape standard curve and improve the quality and efficiency of the shape control in the rolling processes of cold strip mills.展开更多
Based on the calculation of the characteristic parameters by moment method, the curved surface dipoles are optimized by an optimization method, the maximum directivities of some V-curved and Gauss-curved surface dipol...Based on the calculation of the characteristic parameters by moment method, the curved surface dipoles are optimized by an optimization method, the maximum directivities of some V-curved and Gauss-curved surface dipoles are given.展开更多
The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying B...The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying Bézier curve is an im- portant problem, and is also an important research issue in CAD/CAM and NC technology fields. This work investigates the optimal shape modification of Bézier curves by geometric constraints. This paper presents a new method by constrained optimi- zation based on changing the control points of the curves. By this method, the authors modify control points of the original Bézier curves to satisfy the given constraints and modify the shape of the curves optimally. Practical examples are also given.展开更多
In this paper we propose a new family of curve search methods for unconstrained optimization problems, which are based on searching a new iterate along a curve through the current iterate at each iteration, while line...In this paper we propose a new family of curve search methods for unconstrained optimization problems, which are based on searching a new iterate along a curve through the current iterate at each iteration, while line search methods are based on finding a new iterate on a line starting from the current iterate at each iteration. The global convergence and linear convergence rate of these curve search methods are investigated under some mild conditions. Numerical results show that some curve search methods are stable and effective in solving some large scale minimization problems.展开更多
Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive man...Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive manner. In order to produce a curve close enough to control polygon at every control vertex, an optimization model is established to minimize the distance between rational B6zier curve and its control points. This optimization problem is converted to a quadratic programming problem by separating and recombining the objective function. The new combined multi-objective optimization problem is reasonable and easy to solve. With an optimal parameter, the computing process is discussed. Comparative examples show that the designed curve is closer to control polygon and preserves the shape of the control polygon well.展开更多
This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section...This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.展开更多
In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimizati...In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.展开更多
Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an...Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an image,including different translations, scales, and orientations, can be performedusing these parametric curves. For this, Bézier and B-spline curves can be generatedusing a point set that belongs to the outer boundary of the object. Theresulting object shape can be used in computer vision fields, such as searchingand segmentation methods and training machine learning algorithms. Theprerequisite for reconstructing the shape with parametric curves is to obtainsequentially the points in the point set. In this study, a novel algorithm hasbeen developed that sequentially obtains the pixel locations constituting theouter boundary of the object. The proposed algorithm, unlike the methods inthe literature, is implemented using a filter containing weights and an outercircle surrounding the object. In a binary format image, the starting point ofthe tracing is determined using the outer circle, and the next tracing movementand the pixel to be labeled as the boundary point is found by the filter weights.Then, control points that define the curve shape are selected by reducing thenumber of sequential points. Thus, the Bézier and B-spline curve equationsdescribing the shape are obtained using these points. In addition, differenttranslations, scales, and rotations of the object shape are easily provided bychanging the positions of the control points. It has also been shown that themissing part of the object can be completed thanks to the parametric curves.展开更多
Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS)...Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS), a near optimal polygonal approximation was obtained. Compared to the famous Teh chin algorithm, our algorithms have obtained the approximated polygons with less number of vertices and less approximation error. Compared to the dynamic programming algorithm, the processing time of our algorithms are much less expensive.展开更多
In this paper, a method of optimizing the number of hidden layer neurons has been put forward. This optimizing method is suitable for three layers B-p network. The purpose of this optimizing method is to reduce the pr...In this paper, a method of optimizing the number of hidden layer neurons has been put forward. This optimizing method is suitable for three layers B-p network. The purpose of this optimizing method is to reduce the predicting errors when the model is used as predicting model. As an example of application, a predicting model of steel end-quench curves has been designed by using this optimizing method. The result shows that the optimization of ANN hidden layer architecture has an effect on reducing predicting errors.展开更多
The term‘optimization’refers to the process of maximizing the beneficial attributes of a mathematical function or system while minimizing the unfavorable ones.The majority of real-world situations can be modelled as...The term‘optimization’refers to the process of maximizing the beneficial attributes of a mathematical function or system while minimizing the unfavorable ones.The majority of real-world situations can be modelled as an optimization problem.The complex nature of models restricts traditional optimization techniques to obtain a global optimal solution and paves the path for global optimization methods.Particle Swarm Optimization is a potential global optimization technique that has been widely used to address problems in a variety of fields.The idea of this research is to use exponential basis functions and the particle swarm optimization technique to find a numerical solution for the Sine-Gordan equation,whose numerical solutions show the soliton form and has diverse applications.The implemented optimization technique is employed to determine the involved parameter in the basis functions,which was previously approximated as a random number in the work reported till now in the literature.The obtained results are comparable with the results obtained in the literature.The work is presented in the form of figures and tables and is found encouraging.展开更多
Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curv...Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.展开更多
This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry...This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.展开更多
This research focuses on the home health care optimization problem that involves staff routing and scheduling problems.The considered problem is an extension of multiple travelling salesman problem.It consists of find...This research focuses on the home health care optimization problem that involves staff routing and scheduling problems.The considered problem is an extension of multiple travelling salesman problem.It consists of finding the shortest path for a set of caregivers visiting a set of patients at their homes in order to perform various tasks during a given horizon.Thus,a mixed-integer linear programming model is proposed to minimize the overall service time performed by all caregivers while respecting the workload balancing constraint.Nevertheless,when the time horizon become large,practical-sized instances become very difficult to solve in a reasonable computational time.Therefore,a new Learning Genetic Algorithm for mTSP(LGA-mTSP)is proposed to solve the problem.LGA-mTSP is composed of a new genetic algorithm for mTSP,combined with a learning approach,called learning curves.Learning refers to that caregivers’productivity increases as they gain more experience.Learning curves approach is considered as a way to save time and costs.Simulation results show the efficiency of the proposed approach and the impact of learning curve strategy to reduce service times.展开更多
基金The research described in this paper was financially supported by Youth Science Foundation Project’Research on Failure Mechanism and Evaluation Method of Sand Control Measures for Railway Machinery in Sandy Area’(12302511)Ningxia Transportation Department Science and Technology Project(20200173)Central guide local science and technology development funds(22ZY1QA005)。
文摘It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.
基金supported by the National Key R&D Program of China (2020YFB1708300)the Project funded by the China Postdoctoral Science Foundation (2021M701310).
文摘This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as the solver of physical unknown(SGTHB-ITO-MMC).By applying properly basis graded constraints to the hierarchical mesh of truncated hierarchical B-splines(THB),the convergence and robustness of the SGTHB-ITOMMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated,due to the improved accuracy around the explicit structural boundaries.Moreover,an efficient computational method is developed for the topological description functions(TDF)ofMMC under the admissible hierarchicalmesh,which consists of reducing the dimensionality strategy for design space and the locally computing strategy for hierarchical mesh.We apply the above SGTHB-ITO-MMC with improved efficiency to a series of 2D and 3Dcompliance design problems.The numerical results show that the proposed SGTHB-ITO-MMC method outperforms the traditional THB-ITO-MMCmethod in terms of convergence rate and efficiency.Therefore,the proposed SGTHB-ITO-MMC is an effective way of solving topology optimization(TO)problems.
基金supported by Fujian Province Nature Science Foundation under Grant No.2018J01553.
文摘Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing the problem of B-splinefitting for cam pitch curves.Considering that the B-spline curve needs to meet the motion law of the follower to approximate the pitch curve,we use the radial error to quantify the effects of thefitting B-spline curve and the pitch curve.The problem thus boils down to solving a difficult global optimization problem tofind the numbers and positions of the control points or data points of the B-spline curve such that the cumulative radial error between thefitting curve and the original curve is minimized,and this problem is attempted in this paper with a double deep Q-network(DDQN)reinforcement learning(RL)algorithm with data points traceability.Specifically,the RL envir-onment,actions set and current states set are designed to facilitate the search of the data points,along with the design of the reward function and the initialization of the neural network.The experimental results show that when the angle division value of the actions set isfixed,the proposed algorithm can maximize the number of data points of the B-spline curve,and accurately place these data points to the right positions,with the minimum average of radial errors.Our work establishes the theoretical foundation for studying splinefitting using the RL method.
基金Supported by projects of National Natural Science Foundation of China(No.42074150)National Key Research and Development Program of China(No.2023YFC3707901)Futian District Integrated Ground Collapse Monitoring and Early Warning System Construction Project(No.FTCG2023000209).
文摘The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.
基金supported by National Hi-tech Research and Development Program of China(863Program,Grant No.2009AA04Z143)National Science and Technology Support Plan of China(Grant No.2007BAF02B10)Hebei Provincial Great Natural Science Foundation of China(Grant No.E2006001038)
文摘There are very few researches on the shape standard curve currently,and they merely remain on the level of description of the general concept and production experiences,lacking of the in-depth theoretical analysis,and the concrete principle,method and steps for determining the shape standard curve are not put forward,therefore,they are not applicable in industrial production.This is the weakest spot in the research on the basic shape theory.In this paper,the basic shape standard curve and the transverse distribution curve of the exit thickness are attained with stepwise optimization,which is based on the theoretical calculation method of the shape standard curve of strip mills proposed by authors.By calculating the shape discrimination model and the shape forecast model separately,the simultaneous iterative calculation by the previous method is avoided,and the speed and stability of calculation are improved.The compensation models of the transverse temperature difference of the strip,the shape detection roller deflection and the shape of the strip coil are established,respectively,meantime,the basic shape standard curves are compensated,and the relatively perfect theoretical establishment method of the shape standard curve is formed.The simulation and calculation are done on a 1 220 mm five-stand cold strip tandem mill.The simulation and calculation result shows that the principle,method and steps for determining the shape standard curve are correct and feasible,and the correctness of theoretical analysis and calculation is verified.This paper proposes an idea and a method for the establishment of the shape standard curve in the rolling processes of cold strip mills,which develop the theory and model of the shape standard curve and improve the quality and efficiency of the shape control in the rolling processes of cold strip mills.
文摘Based on the calculation of the characteristic parameters by moment method, the curved surface dipoles are optimized by an optimization method, the maximum directivities of some V-curved and Gauss-curved surface dipoles are given.
基金Project (No.10471128) supported by the National Natural ScienceFoundation of China
文摘The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying Bézier curve is an im- portant problem, and is also an important research issue in CAD/CAM and NC technology fields. This work investigates the optimal shape modification of Bézier curves by geometric constraints. This paper presents a new method by constrained optimi- zation based on changing the control points of the curves. By this method, the authors modify control points of the original Bézier curves to satisfy the given constraints and modify the shape of the curves optimally. Practical examples are also given.
文摘In this paper we propose a new family of curve search methods for unconstrained optimization problems, which are based on searching a new iterate along a curve through the current iterate at each iteration, while line search methods are based on finding a new iterate on a line starting from the current iterate at each iteration. The global convergence and linear convergence rate of these curve search methods are investigated under some mild conditions. Numerical results show that some curve search methods are stable and effective in solving some large scale minimization problems.
基金Supported by Natural Science Foundation of China(No.10871208,No.60970097)
文摘Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive manner. In order to produce a curve close enough to control polygon at every control vertex, an optimization model is established to minimize the distance between rational B6zier curve and its control points. This optimization problem is converted to a quadratic programming problem by separating and recombining the objective function. The new combined multi-objective optimization problem is reasonable and easy to solve. With an optimal parameter, the computing process is discussed. Comparative examples show that the designed curve is closer to control polygon and preserves the shape of the control polygon well.
基金Supported by National Natural Science Foundation of China (61272307, 11201422), Natural Science Foundation of Zhejiang Province (Y6110639, LQ13A010004, Yl110034)
基金The research is supported by Project of National Natural Science Foundation of China(30571455)and National "948" Project(2005-4-62)
文摘This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.
基金Thanks for the reviewers’comments to improve the paper.This research was supported by the National Nature Science Foundation of China under Grant Nos.61772163,61761136010,61472111,Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LR16F020003,LQ16F020005.
文摘In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.
文摘Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an image,including different translations, scales, and orientations, can be performedusing these parametric curves. For this, Bézier and B-spline curves can be generatedusing a point set that belongs to the outer boundary of the object. Theresulting object shape can be used in computer vision fields, such as searchingand segmentation methods and training machine learning algorithms. Theprerequisite for reconstructing the shape with parametric curves is to obtainsequentially the points in the point set. In this study, a novel algorithm hasbeen developed that sequentially obtains the pixel locations constituting theouter boundary of the object. The proposed algorithm, unlike the methods inthe literature, is implemented using a filter containing weights and an outercircle surrounding the object. In a binary format image, the starting point ofthe tracing is determined using the outer circle, and the next tracing movementand the pixel to be labeled as the boundary point is found by the filter weights.Then, control points that define the curve shape are selected by reducing thenumber of sequential points. Thus, the Bézier and B-spline curve equationsdescribing the shape are obtained using these points. In addition, differenttranslations, scales, and rotations of the object shape are easily provided bychanging the positions of the control points. It has also been shown that themissing part of the object can be completed thanks to the parametric curves.
文摘Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS), a near optimal polygonal approximation was obtained. Compared to the famous Teh chin algorithm, our algorithms have obtained the approximated polygons with less number of vertices and less approximation error. Compared to the dynamic programming algorithm, the processing time of our algorithms are much less expensive.
文摘In this paper, a method of optimizing the number of hidden layer neurons has been put forward. This optimizing method is suitable for three layers B-p network. The purpose of this optimizing method is to reduce the predicting errors when the model is used as predicting model. As an example of application, a predicting model of steel end-quench curves has been designed by using this optimizing method. The result shows that the optimization of ANN hidden layer architecture has an effect on reducing predicting errors.
文摘The term‘optimization’refers to the process of maximizing the beneficial attributes of a mathematical function or system while minimizing the unfavorable ones.The majority of real-world situations can be modelled as an optimization problem.The complex nature of models restricts traditional optimization techniques to obtain a global optimal solution and paves the path for global optimization methods.Particle Swarm Optimization is a potential global optimization technique that has been widely used to address problems in a variety of fields.The idea of this research is to use exponential basis functions and the particle swarm optimization technique to find a numerical solution for the Sine-Gordan equation,whose numerical solutions show the soliton form and has diverse applications.The implemented optimization technique is employed to determine the involved parameter in the basis functions,which was previously approximated as a random number in the work reported till now in the literature.The obtained results are comparable with the results obtained in the literature.The work is presented in the form of figures and tables and is found encouraging.
基金Supported by the National Natural Science Foundation of China (60873111, 60933007)
文摘Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.
基金supported by the National Key Research and Development Plan (2020YFB1709401)the National Natural Science Foundation (11821202,11732004,12002077,12002073)+1 种基金the Fundamental Research Funds for Central Universities (DUT21RC (3)076,DUT20RC (3)020)Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-063)and 111 Project (B14013).
文摘This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.
文摘This research focuses on the home health care optimization problem that involves staff routing and scheduling problems.The considered problem is an extension of multiple travelling salesman problem.It consists of finding the shortest path for a set of caregivers visiting a set of patients at their homes in order to perform various tasks during a given horizon.Thus,a mixed-integer linear programming model is proposed to minimize the overall service time performed by all caregivers while respecting the workload balancing constraint.Nevertheless,when the time horizon become large,practical-sized instances become very difficult to solve in a reasonable computational time.Therefore,a new Learning Genetic Algorithm for mTSP(LGA-mTSP)is proposed to solve the problem.LGA-mTSP is composed of a new genetic algorithm for mTSP,combined with a learning approach,called learning curves.Learning refers to that caregivers’productivity increases as they gain more experience.Learning curves approach is considered as a way to save time and costs.Simulation results show the efficiency of the proposed approach and the impact of learning curve strategy to reduce service times.