Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduce...A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.展开更多
Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was em...Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.展开更多
We present wavelet bases made of piecewise (low degree) polynomial functions with an (arbitrary) assigned number of vanishing moments. We study some of the properties of these wavelet bases;in particular we consider t...We present wavelet bases made of piecewise (low degree) polynomial functions with an (arbitrary) assigned number of vanishing moments. We study some of the properties of these wavelet bases;in particular we consider their use in the approximation of functions and in numerical quadrature. We focus on two applications: integral kernel sparsification and digital image compression and reconstruction. In these application areas the use of these wavelet bases gives very satisfactory results.展开更多
Based on the brief introduction of the principles of wavelet analysis, this paper gives a summary of several typical wavelet bases from the point of view of perfect reconstruction of signals and emphasizes that design...Based on the brief introduction of the principles of wavelet analysis, this paper gives a summary of several typical wavelet bases from the point of view of perfect reconstruction of signals and emphasizes that designing wavelet bases which are used to decompose the signal into a two-band form is equivalent to designing a two-band filter bank with perfect or nearly perfect property. The generating algorithm corresponding to Daubechies bases and some simulated results are also given in the paper.展开更多
In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline...In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline wavelet packets are also investigated.展开更多
In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study h...In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.展开更多
A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling f...A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which th...In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which the coefficients can be determined by solving a convex quadraticprogramming problem. And the experiment result shows that the approximation error of this algorithm is smaller than that of the polynomial-based fractal function approximation. This newalgorithm exploits the consistency between fractal and scaling function in multi-scale and multiresolution, has a better approximation effect and high potential in data compression, especially inimage compression.展开更多
A novel method of synthesizing seismic wave using wavelet reconstruction is proposed and compared with the traditional method of using theory of Fourier transform. By adjusting the frequency band energy and taking it ...A novel method of synthesizing seismic wave using wavelet reconstruction is proposed and compared with the traditional method of using theory of Fourier transform. By adjusting the frequency band energy and taking it as criterion, the formula of synthesizing seismic wave is deduced. Using the design parameters specified in Chinese Seismic Design Code for buildings, seismic waves are synthesized. Moreover, the method of selecting wavelet bases in synthesizing seismic wave and the influence of the damping ratio on synthesizing results are analyzed. The results show that the synthesis seismic waves using wavelet bases can represent the characteristics of the seismic wave as well as the ground characteristic period, and have good time-frequency non-stationary.展开更多
When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We us...When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.展开更多
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the compu...The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions,4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.展开更多
The 4th-order spline wavelets an a bounded interval are constructed by the 4th-order truncated B-spline functions. These wavelets consist of inner and boundary wavelets. They are bases of wavelet space with finite dim...The 4th-order spline wavelets an a bounded interval are constructed by the 4th-order truncated B-spline functions. These wavelets consist of inner and boundary wavelets. They are bases of wavelet space with finite dimensions. Arty function on an interval will be expanded as the sum of finite items of the scaling functions and wavelets. It plays an important role for numerical analysis of partial differential equations, signal processes, and other similar problems.展开更多
Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation...Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation properties and keep the advantage of quasi-orthogonal transform of the discrete wavelet, transform (DWT). The issue has been supported by computer simulations.展开更多
Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline...Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.展开更多
This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying...This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.展开更多
The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discus...The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.展开更多
Wavelet method is often used in analyzing trend and period of time sequence. When using wavelet method one serious problem is different chosen wavelet basis and scale would lead to different results. Sometimes, the re...Wavelet method is often used in analyzing trend and period of time sequence. When using wavelet method one serious problem is different chosen wavelet basis and scale would lead to different results. Sometimes, the results vary greatly. To overcome this problem and to improve the accuracy and efficiency, a new method denoted by Natural-based Wavelet Method is introduced and extended. It can be proved that the proposed method in fact is a special class of discrete wavelet. At first, two numerical examples are designed to show the capacity of the novel method. Second, this method is applied to a precipitation series. According to wavelet analysis and short-range precipitation prediction, this precipitation exists a faintly increasing trend. Through the analysis, the studied precipitation has two major periods: 11 and 41 years. The results validate that the Natural-based Wavelet Method used in application of multi-complicated observed data is suitable. It is easy to write the source code of the proposed method. When new information appears, new information can be easily added into the original sequence, this is another advantage of the proposed method.展开更多
Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller b...Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.
文摘A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.
文摘Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.
文摘We present wavelet bases made of piecewise (low degree) polynomial functions with an (arbitrary) assigned number of vanishing moments. We study some of the properties of these wavelet bases;in particular we consider their use in the approximation of functions and in numerical quadrature. We focus on two applications: integral kernel sparsification and digital image compression and reconstruction. In these application areas the use of these wavelet bases gives very satisfactory results.
文摘Based on the brief introduction of the principles of wavelet analysis, this paper gives a summary of several typical wavelet bases from the point of view of perfect reconstruction of signals and emphasizes that designing wavelet bases which are used to decompose the signal into a two-band form is equivalent to designing a two-band filter bank with perfect or nearly perfect property. The generating algorithm corresponding to Daubechies bases and some simulated results are also given in the paper.
文摘In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline wavelet packets are also investigated.
文摘In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.
文摘A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
文摘In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which the coefficients can be determined by solving a convex quadraticprogramming problem. And the experiment result shows that the approximation error of this algorithm is smaller than that of the polynomial-based fractal function approximation. This newalgorithm exploits the consistency between fractal and scaling function in multi-scale and multiresolution, has a better approximation effect and high potential in data compression, especially inimage compression.
基金'Qing Lan' Talent Engineering Funds by Lanzhou Jiaotong University (QL-05-08A).
文摘A novel method of synthesizing seismic wave using wavelet reconstruction is proposed and compared with the traditional method of using theory of Fourier transform. By adjusting the frequency band energy and taking it as criterion, the formula of synthesizing seismic wave is deduced. Using the design parameters specified in Chinese Seismic Design Code for buildings, seismic waves are synthesized. Moreover, the method of selecting wavelet bases in synthesizing seismic wave and the influence of the damping ratio on synthesizing results are analyzed. The results show that the synthesis seismic waves using wavelet bases can represent the characteristics of the seismic wave as well as the ground characteristic period, and have good time-frequency non-stationary.
文摘When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.
文摘The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions,4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
文摘The 4th-order spline wavelets an a bounded interval are constructed by the 4th-order truncated B-spline functions. These wavelets consist of inner and boundary wavelets. They are bases of wavelet space with finite dimensions. Arty function on an interval will be expanded as the sum of finite items of the scaling functions and wavelets. It plays an important role for numerical analysis of partial differential equations, signal processes, and other similar problems.
基金Supported by the National Natural Science Foundation of China,no.69672039
文摘Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation properties and keep the advantage of quasi-orthogonal transform of the discrete wavelet, transform (DWT). The issue has been supported by computer simulations.
文摘Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.
文摘This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.
文摘The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.11461026,11361024,51378206 and 11661036)the Provincial Natural Science Foundation(Grant No.2017BAB201009)
文摘Wavelet method is often used in analyzing trend and period of time sequence. When using wavelet method one serious problem is different chosen wavelet basis and scale would lead to different results. Sometimes, the results vary greatly. To overcome this problem and to improve the accuracy and efficiency, a new method denoted by Natural-based Wavelet Method is introduced and extended. It can be proved that the proposed method in fact is a special class of discrete wavelet. At first, two numerical examples are designed to show the capacity of the novel method. Second, this method is applied to a precipitation series. According to wavelet analysis and short-range precipitation prediction, this precipitation exists a faintly increasing trend. Through the analysis, the studied precipitation has two major periods: 11 and 41 years. The results validate that the Natural-based Wavelet Method used in application of multi-complicated observed data is suitable. It is easy to write the source code of the proposed method. When new information appears, new information can be easily added into the original sequence, this is another advantage of the proposed method.
基金This project is supported by National Natural Science Foundation of China (No.50205050).
文摘Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings.