Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was em...Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduce...A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.展开更多
B-Spline wavelet-BEM numerical algorithm is presented. To avoid to treating singular integrals in wavelet-BEM, a method of putting source points out of the domain is used and discussed. Meanwhile, two higher effective...B-Spline wavelet-BEM numerical algorithm is presented. To avoid to treating singular integrals in wavelet-BEM, a method of putting source points out of the domain is used and discussed. Meanwhile, two higher effective numerical quadrature formulae are suggested. Finally, an example in mechanics is given and numerical results show that this method is effective. In addition, this method can be extended to manipulate problems, especially, with singularity.展开更多
In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline...In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline wavelet packets are also investigated.展开更多
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the compu...The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions,4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.展开更多
The seismic wave consists of many seismic phases, which contain rich geophysical information from the hypocenter, medium of seismic wave passing through and so on. It is very important to detect and pick these seismic...The seismic wave consists of many seismic phases, which contain rich geophysical information from the hypocenter, medium of seismic wave passing through and so on. It is very important to detect and pick these seismic phases for understanding the mechanism of earthquake, the Earth structure and property of seismic waves. In order to reduce or avoid the loss resulted from the earthquake, one of the important goals of seismic event detecting is to obtain its related information before and after it occurs. Because of the particularity of P wave and S wave the seismic event detecting focuses on distinguishing P and S waves and picking their onset time, it has been becoming one of the research hotspots for many geophysicists to pick the P and S wave arrival accurately and effectively.展开更多
A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling f...A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.展开更多
A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- ...A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- nate, and the intersection of the three curves predicts the crack location and size. The cracked rotor system is mod- eled using B-spline wavelet on the interval (BSWI) finite element method, and a method based on empirical mode decomposition (EMD) and Laplace wavelet is implemented to improve the identification precision of the first three measured natural frequencies. Compared with the classical nondestructive testing, the presented method shows its effectiveness and reliability. It is feasible to apply this method to the online health monitoring for rotor structure.展开更多
Some construct characteristics and composing material of the new Gyro' s rotor are introduced. Some factors resulting in deformation of the rotor surface are analyzed. Under different loads such as the fo,'ce of def...Some construct characteristics and composing material of the new Gyro' s rotor are introduced. Some factors resulting in deformation of the rotor surface are analyzed. Under different loads such as the fo,'ce of deflecting center, the change of temperature, the fo,ce of pressure and couple factors, the deformation of rotor is analyzed with the wavelet finite element simulation software. The vector distributing map of rotor reformation is given. The deformation resulting from the pressure force of photon is studied. Finally, the influence on Gyro' s performance because of anomalous surface of rotor due to deformation of rotor is researched and the result is useful to forecast the performance of the drift of gyroscope. The disturbing moment resulting from the deformation of rotor can be compensated using the mathematic method, and provides an important reference for both design and optimization of the rotor.展开更多
A strategy for B-spline curve data reduction based on non-uniform B-spline wavelet decomposition is presented. In existing methods of knot removal, ranking the removal knots depends on a procedure of assigning a weigh...A strategy for B-spline curve data reduction based on non-uniform B-spline wavelet decomposition is presented. In existing methods of knot removal, ranking the removal knots depends on a procedure of assigning a weight to each knot to indicate its significance. This is reasonable but not straightforward. Propose is a more straightforward and accurate method to calculate the weight. The wavelet coefficient is taken as a weight for the corresponding knot. The approximating curve and the error can be obtained directly from the wavelet decomposition. By using the hierarchical structure of the wavelet, the error can be computed efficiently in an accumulative manner.展开更多
Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robus...Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.展开更多
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce...Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.展开更多
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa...Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.
文摘Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
文摘A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.
文摘B-Spline wavelet-BEM numerical algorithm is presented. To avoid to treating singular integrals in wavelet-BEM, a method of putting source points out of the domain is used and discussed. Meanwhile, two higher effective numerical quadrature formulae are suggested. Finally, an example in mechanics is given and numerical results show that this method is effective. In addition, this method can be extended to manipulate problems, especially, with singularity.
文摘In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline wavelet packets are also investigated.
文摘The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions,4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
文摘The seismic wave consists of many seismic phases, which contain rich geophysical information from the hypocenter, medium of seismic wave passing through and so on. It is very important to detect and pick these seismic phases for understanding the mechanism of earthquake, the Earth structure and property of seismic waves. In order to reduce or avoid the loss resulted from the earthquake, one of the important goals of seismic event detecting is to obtain its related information before and after it occurs. Because of the particularity of P wave and S wave the seismic event detecting focuses on distinguishing P and S waves and picking their onset time, it has been becoming one of the research hotspots for many geophysicists to pick the P and S wave arrival accurately and effectively.
文摘A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.
基金National Natural Science Foundation of China(No.51225501No.51035007)Program for Changjiang Scholars and Innovative Research Team in University
文摘A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- nate, and the intersection of the three curves predicts the crack location and size. The cracked rotor system is mod- eled using B-spline wavelet on the interval (BSWI) finite element method, and a method based on empirical mode decomposition (EMD) and Laplace wavelet is implemented to improve the identification precision of the first three measured natural frequencies. Compared with the classical nondestructive testing, the presented method shows its effectiveness and reliability. It is feasible to apply this method to the online health monitoring for rotor structure.
文摘Some construct characteristics and composing material of the new Gyro' s rotor are introduced. Some factors resulting in deformation of the rotor surface are analyzed. Under different loads such as the fo,'ce of deflecting center, the change of temperature, the fo,ce of pressure and couple factors, the deformation of rotor is analyzed with the wavelet finite element simulation software. The vector distributing map of rotor reformation is given. The deformation resulting from the pressure force of photon is studied. Finally, the influence on Gyro' s performance because of anomalous surface of rotor due to deformation of rotor is researched and the result is useful to forecast the performance of the drift of gyroscope. The disturbing moment resulting from the deformation of rotor can be compensated using the mathematic method, and provides an important reference for both design and optimization of the rotor.
基金Supported by the Natural Science Foundation of China (50075032) and State High-Technology Development Program of China (2001AA421150)
文摘A strategy for B-spline curve data reduction based on non-uniform B-spline wavelet decomposition is presented. In existing methods of knot removal, ranking the removal knots depends on a procedure of assigning a weight to each knot to indicate its significance. This is reasonable but not straightforward. Propose is a more straightforward and accurate method to calculate the weight. The wavelet coefficient is taken as a weight for the corresponding knot. The approximating curve and the error can be obtained directly from the wavelet decomposition. By using the hierarchical structure of the wavelet, the error can be computed efficiently in an accumulative manner.
基金partly supported by the National Natural Science Foundation of China(Jianhua Wu,Grant No.62041106).
文摘Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.
基金The Science and Technology Research and Development Program Project of China Railway Group Ltd provided funding for this study(Project Nos.2020-Special-02 and 2021Special-08)。
文摘Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.
文摘Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.