Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium...Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.展开更多
As the extension of the linear inverted pendulum(LIP) and planar inverted pendulum(PIP), this paper proposes a novel spatial inverted pendulum(SIP). The SIP is the most general inverted pendulum(IP) than any existing ...As the extension of the linear inverted pendulum(LIP) and planar inverted pendulum(PIP), this paper proposes a novel spatial inverted pendulum(SIP). The SIP is the most general inverted pendulum(IP) than any existing IP. The model of the SIP is presented for the first time. The SIP inherits all the characteristics of the LIP and the PIP, which is a nonlinear,unstable and underactuated system. The SIP has five degrees of motion freedom and three control forces. Thus, it is a multipleinput and multiple-output(MIMO) system with nonlinear dynamics. To realize the spatial trajectory tracking of the SIP,the control structure with five PID controllers will be designed.The parameter tuning of the multiple PIDs is a challenging work for the proposed SIP model. To alleviate the difficulties of the parameter tuning for the multiple PID controllers, optimal PIDs can be achieved with the help of Big Bang – Big Crunch(BBBC) optimization. The BBBC algorithm can successfully optimize the parameters of the multiple PID controllers with high convergence speed. The optimization performance index of the BBBC algorithm is compared with that of the particle swarm optimization(PSO). Simulation results certify the rightness and effectiveness of the proposed control and optimization methods.展开更多
In this paper, we give Bang-Bang (BB) decoupling schemes to suppress the amplitude decoherence in the five-and six-level atom systems in ≡-configuration. We generalize this scheme to the arbitrary level atom system...In this paper, we give Bang-Bang (BB) decoupling schemes to suppress the amplitude decoherence in the five-and six-level atom systems in ≡-configuration. We generalize this scheme to the arbitrary level atom system in ≡-configuration. The corresponding decoupling operators are given explicitly.展开更多
One of the challenges in civil engineering is to find an innovative means of suppressing the structural vibration due to earthquake and wind loadings. This paper presents an approach for effectively suppressing vibrat...One of the challenges in civil engineering is to find an innovative means of suppressing the structural vibration due to earthquake and wind loadings. This paper presents an approach for effectively suppressing vibrations of a structure with variable friction damper using a new Bang-Bang control input. A continuous function of story velocities is used to represent the improved control to reduce chatter, high frequency switching and avoid instability. With a genetic algorithm, the amplitudes of control and preloading friction forces individually prescribed in the controller and damper are optimized for enhancing the seismic performance of buildings. The control strategy for the friction damper is proposed for a three story building with one variable friction damper installed at the first story for seismic reduction. The numerical results indicate that a better reduction of peak response accelerations of floors can be achieved than those of the unmodified controller, and the adaptability of the control system is also improved greatly by comparison with the reduction ratios of the structural response energy excited by different earthquake intensities.展开更多
In this paper,we present decoupling bang-bang operations for the suppression of general decoherence,bothamplitude and phase damping,in a three-level system in A-configuration.We give a program to design a sequence ofp...In this paper,we present decoupling bang-bang operations for the suppression of general decoherence,bothamplitude and phase damping,in a three-level system in A-configuration.We give a program to design a sequence ofperiodic twinborn pulses to suppress the decoherence in such the system.展开更多
The paper considers the mechanism of the Big Bang energy influence on the creation of space-time fields of four structures of the Universe from the 1st type Ether (the Main Field and three spheres of the Relic). It ex...The paper considers the mechanism of the Big Bang energy influence on the creation of space-time fields of four structures of the Universe from the 1st type Ether (the Main Field and three spheres of the Relic). It explains how the Big Bang energy leads to the processes of “melting” in these structures, generating emergent properties that are different from their properties before the Big Bang. The key role of the Big Bang in completing the process of formation of 70% of DE is emphasized. It is shown that the Big Bang preceded the emergence of the furcation point, which chose several directions for the creation of cosmic matter—it was the combined efforts of these directions that created the visible worlds. The principle of dynamic equilibrium is considered the main criterion of the space-time field, in contrast to other physical fields, which is a necessary prerequisite for the quantization of the gravitational field. A spin particle is introduced, capable of emitting special particles—spitons, the characteristics of which are associated with the topology of the Mobius strip and determine the spinor properties of gravitational fields. The mechanism of interaction of particles of the 2nd type of Ether with the fields of space-time is described, allowing the creation of matter first and then the materiality of visible worlds. At the same time, the role of the “matter-negotiator” in the creation process of visible worlds of the Universe is especially highlighted. Since the new properties of gravitational fields go beyond Einstein’s standard theory of gravity, it is proposed to build a new theory of space-time that generalizes it and has a clear geometric interpretation. The proposed theory is based on the action built on a full set of invariants of the Ricci tensor. Within the framework of the Poincaré theory, the classification of furcation points is considered. The processes at the furcation point are described by the Gauss-Laplace curve, for which the principle of conservation of probability density is introduced when considering the transition at the furcation point to four different directions of development.展开更多
The unified chaotic system contains the Lorenz system and the Chen system as two dual systems at the two extremes of its parameter spectrum. This paper presents the design of bang bang controller for unified system an...The unified chaotic system contains the Lorenz system and the Chen system as two dual systems at the two extremes of its parameter spectrum. This paper presents the design of bang bang controller for unified system and multitude of numerical experiments under various control parameters. Numerical experiments meet the theoretic proof perfectly and convincingly demonstrated the controller can be effectively used for unified systems with uncertainty of the equilibrium points. The method enriches the applications of chaotic control.展开更多
为了利用直流大功率快速可控的特性来提高电力系统暂态稳定性,设计了基于Bang-Bang控制的直流大信号暂态稳定控制器,包括控制策略的设计和关键参数的选择。详细分析了暂态过程中换流母线电压和系统短路比对直流功率提升能力的影响,提出...为了利用直流大功率快速可控的特性来提高电力系统暂态稳定性,设计了基于Bang-Bang控制的直流大信号暂态稳定控制器,包括控制策略的设计和关键参数的选择。详细分析了暂态过程中换流母线电压和系统短路比对直流功率提升能力的影响,提出了直流暂态稳定控制的功率阈值选取原则。在三机系统模型中研究了直流功率控制的上升/回降速率和死区阈值的选择对控制性能的影响。在南方电网直流控制保护详细模型中测试了暂态稳定控制器的控制效果,结果表明:同一运行条件下,当无控制器投入时,系统会出现暂态功角失稳;当在±800 k V楚穗直流中加入控制器后,系统能保持暂态功角稳定,验证了控制器能有效提高系统的暂态稳定性。展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602401)by the National Natural Science Foundation of China(No.11825504)。
文摘Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.
基金supported by the National Natural Science Foundation of China(61873079)。
文摘As the extension of the linear inverted pendulum(LIP) and planar inverted pendulum(PIP), this paper proposes a novel spatial inverted pendulum(SIP). The SIP is the most general inverted pendulum(IP) than any existing IP. The model of the SIP is presented for the first time. The SIP inherits all the characteristics of the LIP and the PIP, which is a nonlinear,unstable and underactuated system. The SIP has five degrees of motion freedom and three control forces. Thus, it is a multipleinput and multiple-output(MIMO) system with nonlinear dynamics. To realize the spatial trajectory tracking of the SIP,the control structure with five PID controllers will be designed.The parameter tuning of the multiple PIDs is a challenging work for the proposed SIP model. To alleviate the difficulties of the parameter tuning for the multiple PID controllers, optimal PIDs can be achieved with the help of Big Bang – Big Crunch(BBBC) optimization. The BBBC algorithm can successfully optimize the parameters of the multiple PID controllers with high convergence speed. The optimization performance index of the BBBC algorithm is compared with that of the particle swarm optimization(PSO). Simulation results certify the rightness and effectiveness of the proposed control and optimization methods.
基金the National Fundamental Research Program of China under Grant No.2006CB921106National Natural Science Foundation of China under Grant Nos.10325521,60433050,and 60635040the Science Research Foundation for Doctorial Program of the Ministry of Education under Grant No.20060003048
文摘In this paper, we give Bang-Bang (BB) decoupling schemes to suppress the amplitude decoherence in the five-and six-level atom systems in ≡-configuration. We generalize this scheme to the arbitrary level atom system in ≡-configuration. The corresponding decoupling operators are given explicitly.
基金The project supported by the National Science Fund for Distinguished Young Scholars(50025823).
文摘One of the challenges in civil engineering is to find an innovative means of suppressing the structural vibration due to earthquake and wind loadings. This paper presents an approach for effectively suppressing vibrations of a structure with variable friction damper using a new Bang-Bang control input. A continuous function of story velocities is used to represent the improved control to reduce chatter, high frequency switching and avoid instability. With a genetic algorithm, the amplitudes of control and preloading friction forces individually prescribed in the controller and damper are optimized for enhancing the seismic performance of buildings. The control strategy for the friction damper is proposed for a three story building with one variable friction damper installed at the first story for seismic reduction. The numerical results indicate that a better reduction of peak response accelerations of floors can be achieved than those of the unmodified controller, and the adaptability of the control system is also improved greatly by comparison with the reduction ratios of the structural response energy excited by different earthquake intensities.
基金the National Fundamental Research Program under Grant No. 2006CB921106National Natural Science Foundation of China under Grant Nos. 10325521 and 60433050+1 种基金the SRFDP Program of Ministry of Education under Grant No. 20060003048the Key Project of Ministry of Education under Grant No. 306020
文摘In this paper,we present decoupling bang-bang operations for the suppression of general decoherence,bothamplitude and phase damping,in a three-level system in A-configuration.We give a program to design a sequence ofperiodic twinborn pulses to suppress the decoherence in such the system.
文摘The paper considers the mechanism of the Big Bang energy influence on the creation of space-time fields of four structures of the Universe from the 1st type Ether (the Main Field and three spheres of the Relic). It explains how the Big Bang energy leads to the processes of “melting” in these structures, generating emergent properties that are different from their properties before the Big Bang. The key role of the Big Bang in completing the process of formation of 70% of DE is emphasized. It is shown that the Big Bang preceded the emergence of the furcation point, which chose several directions for the creation of cosmic matter—it was the combined efforts of these directions that created the visible worlds. The principle of dynamic equilibrium is considered the main criterion of the space-time field, in contrast to other physical fields, which is a necessary prerequisite for the quantization of the gravitational field. A spin particle is introduced, capable of emitting special particles—spitons, the characteristics of which are associated with the topology of the Mobius strip and determine the spinor properties of gravitational fields. The mechanism of interaction of particles of the 2nd type of Ether with the fields of space-time is described, allowing the creation of matter first and then the materiality of visible worlds. At the same time, the role of the “matter-negotiator” in the creation process of visible worlds of the Universe is especially highlighted. Since the new properties of gravitational fields go beyond Einstein’s standard theory of gravity, it is proposed to build a new theory of space-time that generalizes it and has a clear geometric interpretation. The proposed theory is based on the action built on a full set of invariants of the Ricci tensor. Within the framework of the Poincaré theory, the classification of furcation points is considered. The processes at the furcation point are described by the Gauss-Laplace curve, for which the principle of conservation of probability density is introduced when considering the transition at the furcation point to four different directions of development.
基金Supported by the National Natural Science Foundation of China(50209012)
文摘The unified chaotic system contains the Lorenz system and the Chen system as two dual systems at the two extremes of its parameter spectrum. This paper presents the design of bang bang controller for unified system and multitude of numerical experiments under various control parameters. Numerical experiments meet the theoretic proof perfectly and convincingly demonstrated the controller can be effectively used for unified systems with uncertainty of the equilibrium points. The method enriches the applications of chaotic control.
文摘为了利用直流大功率快速可控的特性来提高电力系统暂态稳定性,设计了基于Bang-Bang控制的直流大信号暂态稳定控制器,包括控制策略的设计和关键参数的选择。详细分析了暂态过程中换流母线电压和系统短路比对直流功率提升能力的影响,提出了直流暂态稳定控制的功率阈值选取原则。在三机系统模型中研究了直流功率控制的上升/回降速率和死区阈值的选择对控制性能的影响。在南方电网直流控制保护详细模型中测试了暂态稳定控制器的控制效果,结果表明:同一运行条件下,当无控制器投入时,系统会出现暂态功角失稳;当在±800 k V楚穗直流中加入控制器后,系统能保持暂态功角稳定,验证了控制器能有效提高系统的暂态稳定性。