Nel corso del 1991 è stato effettuato un censimento delle tane di Tasso Meles melesin un’area molto antropizzata della Pianura Padana posta alla conflaenza del flume Lambro nel flumePo, estesa per 103 Km^2. Si s...Nel corso del 1991 è stato effettuato un censimento delle tane di Tasso Meles melesin un’area molto antropizzata della Pianura Padana posta alla conflaenza del flume Lambro nel flumePo, estesa per 103 Km^2. Si sono individuate 24 tane (0,2 Km^2). Density and distribution of Badger’s setts (Meles meles) in the Lower Lodigiano (NorthernItaly). A census of the Badger’s setts (Meles meles) was carried out in 1991 in a densely inhabited areaof the Po Plain, near the mouth of the river Lambro into the Po. In the study area (extended for103 Km^2) 24 setts have been found (0,2 Km^2).展开更多
Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used an...Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used and clinically relevant thoracic contusion/compression spinal cord injury model in rats. Rats were randomly assigned to either a T9 spinal cord injury or sham laminectomy. Locomotion recovery was assessed using the Basso, Beattie, and Bresnahan open field rating scale and the CatWalk XT■gait analysis. To determine the potential bias from weight changes, corrected hindlimb(H) values(divided by the unaffected forelimb(F) values) were calculated. Six weeks after injury, cyst formation, astrogliosis, and the deposition of chondroitin sulfate glycosaminoglycans were assessed by immunohistochemistry staining. Compared with the baseline, a significant spontaneous recovery could be observed in the CatWalk XT■parameters max intensity, mean intensity, max intensity at%, and max contact mean intensity from 4 weeks after injury onwards. Of note, corrected values(H/F) of CatWalk XT■parameters showed a significantly less vulnerability to the weight changes than absolute values, specifically in static parameters. The corrected CatWalk XT■parameters were positively correlated with the Basso, Beattie, and Bresnahan rating scale scores, cyst formation, the immunointensity of astrogliosis and chondroitin sulfate glycosaminoglycan deposition. The CatWalk XT■gait analysis and especially its static parameters, therefore, seem to be highly useful in assessing spontaneous recovery of hindlimb function after severe thoracic spinal cord injury. Because many CatWalk XT■parameters of the hindlimbs seem to be affected by body weight changes, using their corrected values might be a valuable option to improve this dependency.展开更多
Tau protein, a microtubule-associated protein, has a high specific expression in neurons and axons. Because traumatic spinal cord injury mainly affects neurons and axons, we speculated that tau protein may be a promis...Tau protein, a microtubule-associated protein, has a high specific expression in neurons and axons. Because traumatic spinal cord injury mainly affects neurons and axons, we speculated that tau protein may be a promising biomarker to reflect the degree of spinal cord injury and prognosis of motor function. In this study, 160 female Sprague-Dawley rats were randomly divided into a sham group, and mild, moderate, and severe spinal cord injury groups. A laminectomy was performed at the T8 level to expose the spinal cord in all groups. A contusion lesion was made with the NYU-MASCIS impactor by dropping a 10 g rod from heights of 12.5 mm(mild), 25 mm(moderate) and 50 mm(severe) upon the exposed dorsal surface of the spinal cord. Tau protein levels were measured in serum and cerebrospinal fluid samples at 1, 6, 12, 24 hours, 3, 7, 14 and 28 days after operation. Locomotor function of all rats was assessed using the Basso, Beattie and Bresnahan locomotor rating scale. Tau protein concentration in the three spinal cord injury groups(both in serum and cerebrospinal fluid) rapidly increased and peaked at 12 hours after spinal cord injury. Statistically significant positive linear correlations were found between tau protein level and spinal cord injury severity in the three spinal cord injury groups, and between the tau protein level and Basso, Beattie, and Bresnahan locomotor rating scale scores. The tau protein level at 12 hours in the three spinal cord injury groups was negatively correlated with Basso, Beattie, and Bresnahan locomotor rating scale scores at 28 days(serum: r =-0.94; cerebrospinal fluid: r =-0.95). Our data suggest that tau protein levels in serum and cerebrospinal fluid might be a promising biomarker for predicting the severity and functional outcome of traumatic spinal cord injury.展开更多
Hydrogen can relieve tissue-damaging oxidative stress, inflammation and apoptosis. Injection of hydrogen-rich saline is an effective method for transporting molecular hydrogen. We hypothesized that hydrogen-rich salin...Hydrogen can relieve tissue-damaging oxidative stress, inflammation and apoptosis. Injection of hydrogen-rich saline is an effective method for transporting molecular hydrogen. We hypothesized that hydrogen-rich saline would promote the repair of spinal cord injury induced by Allen's method in rats. At 0.5, 1, 2, 4, 8, 12 and 24 hours after injury, then once daily for 2 weeks, 0.25 mL/kg hydrogen-rich saline was infused into the subarachnoid space through a catheter. Results at 24 hours, 48 hours, 1 week and 2 weeks after injury showed that hydrogen-rich saline markedly reduced cell death, inflammatory cell infiltration, serum malondialdehyde content, and caspa se-3 immunoreactivity, elevated serum superoxide dismutase activity and calcitonin gene-related peptide immunoreactivity, and improved motor function in the hindlimb. The present study confirms that hydrogen-rich saline injected within 2 weeks of injury effectively contributes to the repair of spinal cord injury in the acute stage.展开更多
Acupuncture has been shown to lessen the inflammatory reaction after acute spinal cord injury and reduce secondary injury.However,the mechanism of action remains unclear.In this study,a rat model of spinal cord injury...Acupuncture has been shown to lessen the inflammatory reaction after acute spinal cord injury and reduce secondary injury.However,the mechanism of action remains unclear.In this study,a rat model of spinal cord injury was established by compressing the T8-9 segments using a modified Nystrom method.Twenty-four hours after injury,Zusanli(ST36),Xuanzhong(GB39),Futu(ST32)and Sanyinjiao(SP6)were stimulated with electroacupuncture.Rats with spinal cord injury alone were used as controls.At 2,4 and 6 weeks after injury,acetylcholinesterase(ACh E)activity at the site of injury,the number of medium and large neurons in the spinal cord anterior horn,glial cell line-derived neurotrophic factor(GDNF)m RNA expression,and Basso,Beattie and Bresnahan locomotor rating scale scores were greater in the electroacupuncture group compared with the control group.These results demonstrate that electroacupuncture increases ACh E activity,up-regulates GDNF m RNA expression,and promotes the recovery of motor neuron function in the anterior horn after spinal cord injury.展开更多
Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progeni...Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progenitor cell-conditioned medium might have therapeutic effectiveness for the treatment of spinal cord injury using both in vitro and in vivo experiments. After primary culture of bone marrow-derived macrophages, lipopolysaccharide stimulation was used to classically activate macrophages to their proinflammatory phenotype. These cells were then treated with endothelial progenitor cell-conditioned medium or control medium. Polymerase chain reaction was used to determine mR NA expression levels of related inflammatory factors. Afterwards, primary cultures of rat spinal cord neuronal cells were prepared and treated with H2O2and either endothelial progenitor cell-conditioned medium or control medium. Hoechst 33258 and propidium iodide staining were used to calculate the proportion of neurons undergoing apoptosis. Aortic ring assay was performed to assess the effect of endothelial progenitor cell-conditioned medium on angiogenesis. Compared with control medium, endothelial progenitor cell-conditioned medium mitigated the macrophage inflammatory response at the spinal cord injury site, suppressed apoptosis, and promoted angiogenesis. Next, we used a rat model of spinal cord injury to examine the effects of the endothelial progenitor cell-conditioned medium in vivo. The rats were randomly administered intraperitoneal injection of PBS, control medium or endothelial progenitor cell-conditioned medium, once a day, for 6 consecutive weeks. Immunohistochemistry was used to observe neuronal morphology. Terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay was performed to detect the proportion of apoptotic neurons in the gray matter. The Basso, Beattie and Bresnahan Locomotor Rating Scale was used to evaluate the recovery of motor function of the bilateral hind limbs after spinal cord injury. Compared with the other two groups, the number of axons was increased, cavities in the spinal cord were decreased, the proportion of apoptotic neurons in the gray matter was reduced, and the Basso, Beattie and Bresnahan score was higher in the endothelial progenitor cell-conditioned medium group. Taken together, the in vivo and in vitro results suggest that endothelial progenitor cell-conditioned medium suppresses inflammation, promotes angiogenesis, provides neuroprotection, and promotes functional recovery after spinal cord injury.展开更多
In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully imp...In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully improved motor dysfunction in chronic spinal cord injury. However, their effectiveness is not sufficient. We previously found a new effective compound for spinal cord injury, matrine, which induced axonal growth and functional recovery in acute spinal cord injury mice via direct activation of extracellular heat shock protein 90. Although our previous study clarified that matrine was an activator of extracellular heat shock protein 90, the potential of matrine for spinal cord injury in chronic phase has not been sufficiently evaluated. Thus, this study aimed to investigate whether matrine ameliorates chronic spinal cord injury in mice. Once daily intragastric administration of matrine(100 μmol/kg per day) to spinal cord injury mice were starte at 28 days after injury, and continued for 154 days. Continuous mat rine treatment improved hindlimb motor function in chronic spinal cord injury mice. In injured spinal cords of the matrine-treated mice, the density of neurofilament-H-positive axons was increased. Moreover, matrine treatment increased the density of bassoon-positive presynapses in contact with choline acetyltransferase-positive motor neurons in the lumbar spinal cord. These findings suggest that matrine promotes remodeling and reconnection of neural circuits to regulate hindlimb movement. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama(approval No. A2013 INM-1 and A2016 INM-3) on May 7, 2013 and May 17, 2016, respectively.展开更多
Objective:An increasing number of studies indicate that autophagy plays an important role in the pathogenesis of spinal cord injury,and that regulating autophagy can enhance recovery from spinal cord injury.However,th...Objective:An increasing number of studies indicate that autophagy plays an important role in the pathogenesis of spinal cord injury,and that regulating autophagy can enhance recovery from spinal cord injury.However,the effect of regulating autophagy and whether autophagy is detrimental or beneficial after spinal cord injury remain unclear.Therefore,in this study we evaluated the effects of autophagy regulation on spinal cord injury in rats by direct and indirect comparison,in an effort to provide a basis for further research.Data source:Relevant literature published from inception to February 1,2018 were included by searching Wanfang,CNKI,Web of Science,MEDLINE(OvidSP),PubMed and Google Scholar in English and Chinese.The keywords included"autophagy","spinal cord injury",and"rat".Data selection:The literature included in vivo experimental studies on autophagy regulation in the treatment of spinal cord injury(including intervention pre-and post-spinal cord injury).Meta-analyses were conducted at different time points to compare the therapeutic effects of promoting or inhibiting autophagy,and subgroup analyses were also conducted.Outcome measure:Basso,Beattie,and Bresnahan scores.Results:Of the 622 studies,33 studies of median quality were included in the analyses.Basso,Beattie,and Bresnahan scores were higher at 1 day(MD=1.80,95%CI:0.81-2.79,P=0.0004),3 days(MD=0.92,95%CI:0.72-1.13,P<0.00001),1 week(MD=2.39,95%CI:1.85-2.92,P<0.00001),2 weeks(MD=3.26,95%CI:2.40-4.13,P<0.00001),3 weeks(MD=3.13,95%CI:2.51-3.75,P<0.00001)and 4 weeks(MD=3.18,95%CI:2.43-3.92,P<0.00001)after spinal cord injury with upregulation of autophagy compared with the control group(drug solvent control,such as saline group).Basso,Beattie,and Bresnahan scores were higher at 1 day(MD=6.48,95%CI:5.83-7.13,P<0.00001),2 weeks(MD=2.43,95%CI:0.79-4.07,P=0.004),3 weeks(MD=2.96,95%CI:0.09-5.84,P=0.04)and 4 weeks(MD=4.41,95%CI:1.08-7.75,P=0.01)after spinal cord injury with downregulation of autophagy compared with the control group.Indirect comparison of upregulation and downregulation of autophagy showed no differences in Basso,Beattie,and Bresnahan scores at 1 day(MD=-4.68,95%CI:-5.840 to-3.496,P=0.94644),3 days(MD=-0.28,95%CI:-2.231-1.671,P=0.99448),1 week(MD=1.83,95%CI:0.0076-3.584,P=0.94588),2 weeks(MD=0.81,95%CI:-0.850-2.470,P=0.93055),3 weeks(MD=0.17,95%Cl:-2.771-3.111,P=0.99546)or 4 weeks(MD=-1.23,95%Cl:-4.647-2.187,P=0.98264)compared with the control group.Conclusion:Regulation of autophagy improves neurological function,whether it is upregulated or downregulated.There was no difference between upregulation and downregulation of autophagy in the treatment of spinal cord injury.The variability in results among the studies may be associated with differences in research methods,the lack of clearly defined autophagy characteristics after spinal cord injury,and the limited autophagy monitoring techniques.Thus,methods should be standardized,and the dynamic regulation of autophagy should be examined in future studies.展开更多
After spinal cord injury,the number of glial cells and motor neurons expressing bone morphogenetic protein 7(BMP7)increases,indicating that upregulation of BMP7 can promote nerve repair.We,therefore,tested whether d...After spinal cord injury,the number of glial cells and motor neurons expressing bone morphogenetic protein 7(BMP7)increases,indicating that upregulation of BMP7 can promote nerve repair.We,therefore,tested whether direct injection of BMP7 into acutely injured ratalalo createrywith 50 ng BMP7(BMP7 group)or physiological saline(control group)for 7 consecutive days.Electrophysiological examination showed that the amplitude of N1 in motor evoked potentials(MEP)decreased after spinal cord injury.At 8 weeks post-operation,the amplitude of N1 in the BMP7 group was remarkably higher than that at 1 week post-operation and was higher than that of the control group.Basso,Beattie,Bresnahan scale(BBB)scores,hematoxylin-eosin staining,and western blot assay showed that at 1,2,4 and 8 weeks post-operation,BBB scores were increased;Nissl body staining was stronger;the number of Nissl-stained bodies was increased;the number of vacuoles gradually decreased;the number of synapses was increased;and the expression of neuronal marker,neurofilament protein 200,was increased in the hind limbs of the BMP7 group compared with the control group.Western blot assay showed that the expression of GFAP protein in BMP7 group and control group did not change significantly and there was no significant difference between the BMP7 and control groups.These data confirmed that local injection of BMP7 can promote neuronal regeneration after spinal cord injury and promote recovery of motor function in rats.展开更多
Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically re...Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically relevant,standardized rat model of contusion SCI were identified by searching the PubMed,Embase and Cochrane databases,and the extracted data were analyzed by Stata 14.0.Data selection:Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso,Beattie,and Bresnahan lo-comotor rating scale.Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups.Outcome measures:The restoration of motor function was assessed by the Basso,Beattie,and Bresnahan locomotor rating scale.Results:We identified 1756 non-duplicated papers by searching the aforementioned electronic databases,and 30 full-text articles met the inclusion criteria.A total of 37 studies reported in the 30 articles were included in the meta-analysis.The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs,to a moderate extent(pooled standardized mean difference(SMD)=0.73;95%confidence interval(CI):0.47–1.00;P<0.001).NSCs obtained from different donor species(rat:SMD=0.74;95%CI:0.36–1.13;human:SMD=0.78;95%CI:0.31–1.25),at different donor ages(fetal:SMD=0.67;95%CI:0.43–0.92;adult:SMD=0.86;95%CI:0.50–1.22)and from different origins(brain-derived:SMD=0.59;95%CI:0.27–0.91;spinal cord-derived:SMD=0.51;95%CI:0.22–0.79)had similar efficacies on improved functional recovery;however,adult induced pluripotent stem cell-derived NSCs showed no significant efficacies.Furthermore,the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery(SMD=0.45;95%CI:0.21–0.70).However,shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies(acute:SMD=1.22;95%CI:0.81–1.63;subacute:SMD=0.75;95%CI:0.42–1.09).For chronic injuries,NSC implantation did not significantly improve functional recovery(SMD=0.25;95%CI:–0.16 to 0.65).Conclusion:NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.展开更多
Decompression is the major therapeutic strategy for acute spinal cord injury,but there is some debate about the time window for decompression following spinal cord injury.An important goal and challenge in the treatme...Decompression is the major therapeutic strategy for acute spinal cord injury,but there is some debate about the time window for decompression following spinal cord injury.An important goal and challenge in the treatment of spinal cord injury is inhibiting or reversing secondary injury.Governor Vessel electroacupuncture can improve symptoms of spinal cord injury by inhibiting cell apoptosis and improving the microenvironment of the injured spinal cord.In this study,Governor Vessel electroacupuncture combined with decompression at different time points was used to treat acute spinal cord injury.The rat models were established by inserting a balloon catheter into the atlanto-occipital space.The upper cervical spinal cord was compressed for 12 or 48 hours prior to decompression.Electroacupuncture was conducted at the acupoints Dazhui(GV14) and Baihui(GV 20)(2 Hz,15 minutes) once a day for 14 consecutive days.Compared with decompression alone,hind limb motor function recovery was superior after decompression for 12 and 48 hours combined with electroacupuncture.However,the recovery of motor function was not significantly different at 14 days after treatment in rats receiving decompression for 12 hours.Platelet-activating factor levels and caspase-9 protein expression were significantly reduced in rats receiving electroacupuncture compared with decompression alone.These findings indicate that compared with decompression alone,Governor Vessel electroacupuncture combined with delayed decompression(48 hours) is more effective in the treatment of upper cervical spinal cord injury.Governor Vessel electroacupuncture combined with early decompression(12 hours) can accelerate the recovery of nerve movement in rats with upper cervical spinal cord injury.Nevertheless,further studies are necessary to confirm whether it is possible to obtain additional benefit compared with early decompression alone.展开更多
Spinal cord injury (SCI) is a devastating condition with loss of motor and sensory functions below the injury level. Cell based therapies are experimented in pre-clinical studies around the world. Neural stem cells ...Spinal cord injury (SCI) is a devastating condition with loss of motor and sensory functions below the injury level. Cell based therapies are experimented in pre-clinical studies around the world. Neural stem cells are located intra-craniafly in subventricular zone and hippocampus which are highly invasive sourc- es. The olfactory epithelium is a neurogenic tissue where neurogenesis takes place throughout the adult life by a population of stem/progenitor cells. Easily accessible olfactory neuroepithelial stem/progenitor cells are an attractive cell source for transplantation in SCI. Globose basal cells (GBCs) were isolated from rat olfactory epithelium, characterized by flow cytometry and immunohistochemically. These ceils were further studied for neurosphere formation and neuronal induction. T10 laminectomy was done to create drop-weight SCI in rats. On the 9th day following SCI, 5 × 105 cells were transplanted into injured rat spinal cord. The outcome of transplantation was assessed by the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, motor evoked potential and histological observation. GBCs expressed neural stem cell markers nestin, SOX2, NCAM and also mesenchymal stem cell markers (CD29, CD54, CD90, CD73, CD105). These cells formed neurosphere, a culture characteristics of NSCs and on induction, differentiated cells expressed neuronal markers ~III tubulin, microtubule-associated protein 2, neuronal nuclei, and neurofilament. GBCs transplanted rats exhibited hindlimb motor recovery as confirmed by BBB score and gastrocnemius muscle electromyography amplitude was increased compared to controls. Green fluorescent protein labelled GBCs survived around the injury epicenter and differentiated into βⅢ tubulin-immunoreactive neuron-like cells. GBCs could be an alternative to NSCs from an accessible source for autologous neurotransplantation after SCI without ethical issues.展开更多
文摘Nel corso del 1991 è stato effettuato un censimento delle tane di Tasso Meles melesin un’area molto antropizzata della Pianura Padana posta alla conflaenza del flume Lambro nel flumePo, estesa per 103 Km^2. Si sono individuate 24 tane (0,2 Km^2). Density and distribution of Badger’s setts (Meles meles) in the Lower Lodigiano (NorthernItaly). A census of the Badger’s setts (Meles meles) was carried out in 1991 in a densely inhabited areaof the Po Plain, near the mouth of the river Lambro into the Po. In the study area (extended for103 Km^2) 24 setts have been found (0,2 Km^2).
文摘Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used and clinically relevant thoracic contusion/compression spinal cord injury model in rats. Rats were randomly assigned to either a T9 spinal cord injury or sham laminectomy. Locomotion recovery was assessed using the Basso, Beattie, and Bresnahan open field rating scale and the CatWalk XT■gait analysis. To determine the potential bias from weight changes, corrected hindlimb(H) values(divided by the unaffected forelimb(F) values) were calculated. Six weeks after injury, cyst formation, astrogliosis, and the deposition of chondroitin sulfate glycosaminoglycans were assessed by immunohistochemistry staining. Compared with the baseline, a significant spontaneous recovery could be observed in the CatWalk XT■parameters max intensity, mean intensity, max intensity at%, and max contact mean intensity from 4 weeks after injury onwards. Of note, corrected values(H/F) of CatWalk XT■parameters showed a significantly less vulnerability to the weight changes than absolute values, specifically in static parameters. The corrected CatWalk XT■parameters were positively correlated with the Basso, Beattie, and Bresnahan rating scale scores, cyst formation, the immunointensity of astrogliosis and chondroitin sulfate glycosaminoglycan deposition. The CatWalk XT■gait analysis and especially its static parameters, therefore, seem to be highly useful in assessing spontaneous recovery of hindlimb function after severe thoracic spinal cord injury. Because many CatWalk XT■parameters of the hindlimbs seem to be affected by body weight changes, using their corrected values might be a valuable option to improve this dependency.
基金supported by the National Natural Science Foundation of China,No.81671211,81672251(both to HLL)
文摘Tau protein, a microtubule-associated protein, has a high specific expression in neurons and axons. Because traumatic spinal cord injury mainly affects neurons and axons, we speculated that tau protein may be a promising biomarker to reflect the degree of spinal cord injury and prognosis of motor function. In this study, 160 female Sprague-Dawley rats were randomly divided into a sham group, and mild, moderate, and severe spinal cord injury groups. A laminectomy was performed at the T8 level to expose the spinal cord in all groups. A contusion lesion was made with the NYU-MASCIS impactor by dropping a 10 g rod from heights of 12.5 mm(mild), 25 mm(moderate) and 50 mm(severe) upon the exposed dorsal surface of the spinal cord. Tau protein levels were measured in serum and cerebrospinal fluid samples at 1, 6, 12, 24 hours, 3, 7, 14 and 28 days after operation. Locomotor function of all rats was assessed using the Basso, Beattie and Bresnahan locomotor rating scale. Tau protein concentration in the three spinal cord injury groups(both in serum and cerebrospinal fluid) rapidly increased and peaked at 12 hours after spinal cord injury. Statistically significant positive linear correlations were found between tau protein level and spinal cord injury severity in the three spinal cord injury groups, and between the tau protein level and Basso, Beattie, and Bresnahan locomotor rating scale scores. The tau protein level at 12 hours in the three spinal cord injury groups was negatively correlated with Basso, Beattie, and Bresnahan locomotor rating scale scores at 28 days(serum: r =-0.94; cerebrospinal fluid: r =-0.95). Our data suggest that tau protein levels in serum and cerebrospinal fluid might be a promising biomarker for predicting the severity and functional outcome of traumatic spinal cord injury.
基金supported by a grant from Hunan Provincial Science and Technology Ministry of China,No.2015JJ6116
文摘Hydrogen can relieve tissue-damaging oxidative stress, inflammation and apoptosis. Injection of hydrogen-rich saline is an effective method for transporting molecular hydrogen. We hypothesized that hydrogen-rich saline would promote the repair of spinal cord injury induced by Allen's method in rats. At 0.5, 1, 2, 4, 8, 12 and 24 hours after injury, then once daily for 2 weeks, 0.25 mL/kg hydrogen-rich saline was infused into the subarachnoid space through a catheter. Results at 24 hours, 48 hours, 1 week and 2 weeks after injury showed that hydrogen-rich saline markedly reduced cell death, inflammatory cell infiltration, serum malondialdehyde content, and caspa se-3 immunoreactivity, elevated serum superoxide dismutase activity and calcitonin gene-related peptide immunoreactivity, and improved motor function in the hindlimb. The present study confirms that hydrogen-rich saline injected within 2 weeks of injury effectively contributes to the repair of spinal cord injury in the acute stage.
基金supported by a grant from the Shaanxi Province Scientific and Technological Project in China,No.2014TM4193
文摘Acupuncture has been shown to lessen the inflammatory reaction after acute spinal cord injury and reduce secondary injury.However,the mechanism of action remains unclear.In this study,a rat model of spinal cord injury was established by compressing the T8-9 segments using a modified Nystrom method.Twenty-four hours after injury,Zusanli(ST36),Xuanzhong(GB39),Futu(ST32)and Sanyinjiao(SP6)were stimulated with electroacupuncture.Rats with spinal cord injury alone were used as controls.At 2,4 and 6 weeks after injury,acetylcholinesterase(ACh E)activity at the site of injury,the number of medium and large neurons in the spinal cord anterior horn,glial cell line-derived neurotrophic factor(GDNF)m RNA expression,and Basso,Beattie and Bresnahan locomotor rating scale scores were greater in the electroacupuncture group compared with the control group.These results demonstrate that electroacupuncture increases ACh E activity,up-regulates GDNF m RNA expression,and promotes the recovery of motor neuron function in the anterior horn after spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.81171173 and 81672161
文摘Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progenitor cell-conditioned medium might have therapeutic effectiveness for the treatment of spinal cord injury using both in vitro and in vivo experiments. After primary culture of bone marrow-derived macrophages, lipopolysaccharide stimulation was used to classically activate macrophages to their proinflammatory phenotype. These cells were then treated with endothelial progenitor cell-conditioned medium or control medium. Polymerase chain reaction was used to determine mR NA expression levels of related inflammatory factors. Afterwards, primary cultures of rat spinal cord neuronal cells were prepared and treated with H2O2and either endothelial progenitor cell-conditioned medium or control medium. Hoechst 33258 and propidium iodide staining were used to calculate the proportion of neurons undergoing apoptosis. Aortic ring assay was performed to assess the effect of endothelial progenitor cell-conditioned medium on angiogenesis. Compared with control medium, endothelial progenitor cell-conditioned medium mitigated the macrophage inflammatory response at the spinal cord injury site, suppressed apoptosis, and promoted angiogenesis. Next, we used a rat model of spinal cord injury to examine the effects of the endothelial progenitor cell-conditioned medium in vivo. The rats were randomly administered intraperitoneal injection of PBS, control medium or endothelial progenitor cell-conditioned medium, once a day, for 6 consecutive weeks. Immunohistochemistry was used to observe neuronal morphology. Terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay was performed to detect the proportion of apoptotic neurons in the gray matter. The Basso, Beattie and Bresnahan Locomotor Rating Scale was used to evaluate the recovery of motor function of the bilateral hind limbs after spinal cord injury. Compared with the other two groups, the number of axons was increased, cavities in the spinal cord were decreased, the proportion of apoptotic neurons in the gray matter was reduced, and the Basso, Beattie and Bresnahan score was higher in the endothelial progenitor cell-conditioned medium group. Taken together, the in vivo and in vitro results suggest that endothelial progenitor cell-conditioned medium suppresses inflammation, promotes angiogenesis, provides neuroprotection, and promotes functional recovery after spinal cord injury.
基金supported by a Grant-in-Aid for Challenging Exploratory Research(No.26670044)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan(to CT)a Grant-in-Aid for a Cooperative Research Project from the Institute of Natural Medicine,University of Toyama,in 2014 and 2015(to CT)+1 种基金discretionary funds of the President of the University of Toyama,in 2014,2015,and 2016(to CT)the Natural Medicine and Biotechnology Research of Toyama Prefecture,Japan(to CT)
文摘In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully improved motor dysfunction in chronic spinal cord injury. However, their effectiveness is not sufficient. We previously found a new effective compound for spinal cord injury, matrine, which induced axonal growth and functional recovery in acute spinal cord injury mice via direct activation of extracellular heat shock protein 90. Although our previous study clarified that matrine was an activator of extracellular heat shock protein 90, the potential of matrine for spinal cord injury in chronic phase has not been sufficiently evaluated. Thus, this study aimed to investigate whether matrine ameliorates chronic spinal cord injury in mice. Once daily intragastric administration of matrine(100 μmol/kg per day) to spinal cord injury mice were starte at 28 days after injury, and continued for 154 days. Continuous mat rine treatment improved hindlimb motor function in chronic spinal cord injury mice. In injured spinal cords of the matrine-treated mice, the density of neurofilament-H-positive axons was increased. Moreover, matrine treatment increased the density of bassoon-positive presynapses in contact with choline acetyltransferase-positive motor neurons in the lumbar spinal cord. These findings suggest that matrine promotes remodeling and reconnection of neural circuits to regulate hindlimb movement. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama(approval No. A2013 INM-1 and A2016 INM-3) on May 7, 2013 and May 17, 2016, respectively.
基金supported by the Beijing Excellent Talent Training Foundation of China,No.2017000021469G215(to DZhang)the Natural Science Foundation of Capital Medical University of China,No.PYZ2018081(to DZhang)the Youth Science Foundation of Beijing Tiantan Hospital of China,No.2016-YQN-14(to DZhang)
文摘Objective:An increasing number of studies indicate that autophagy plays an important role in the pathogenesis of spinal cord injury,and that regulating autophagy can enhance recovery from spinal cord injury.However,the effect of regulating autophagy and whether autophagy is detrimental or beneficial after spinal cord injury remain unclear.Therefore,in this study we evaluated the effects of autophagy regulation on spinal cord injury in rats by direct and indirect comparison,in an effort to provide a basis for further research.Data source:Relevant literature published from inception to February 1,2018 were included by searching Wanfang,CNKI,Web of Science,MEDLINE(OvidSP),PubMed and Google Scholar in English and Chinese.The keywords included"autophagy","spinal cord injury",and"rat".Data selection:The literature included in vivo experimental studies on autophagy regulation in the treatment of spinal cord injury(including intervention pre-and post-spinal cord injury).Meta-analyses were conducted at different time points to compare the therapeutic effects of promoting or inhibiting autophagy,and subgroup analyses were also conducted.Outcome measure:Basso,Beattie,and Bresnahan scores.Results:Of the 622 studies,33 studies of median quality were included in the analyses.Basso,Beattie,and Bresnahan scores were higher at 1 day(MD=1.80,95%CI:0.81-2.79,P=0.0004),3 days(MD=0.92,95%CI:0.72-1.13,P<0.00001),1 week(MD=2.39,95%CI:1.85-2.92,P<0.00001),2 weeks(MD=3.26,95%CI:2.40-4.13,P<0.00001),3 weeks(MD=3.13,95%CI:2.51-3.75,P<0.00001)and 4 weeks(MD=3.18,95%CI:2.43-3.92,P<0.00001)after spinal cord injury with upregulation of autophagy compared with the control group(drug solvent control,such as saline group).Basso,Beattie,and Bresnahan scores were higher at 1 day(MD=6.48,95%CI:5.83-7.13,P<0.00001),2 weeks(MD=2.43,95%CI:0.79-4.07,P=0.004),3 weeks(MD=2.96,95%CI:0.09-5.84,P=0.04)and 4 weeks(MD=4.41,95%CI:1.08-7.75,P=0.01)after spinal cord injury with downregulation of autophagy compared with the control group.Indirect comparison of upregulation and downregulation of autophagy showed no differences in Basso,Beattie,and Bresnahan scores at 1 day(MD=-4.68,95%CI:-5.840 to-3.496,P=0.94644),3 days(MD=-0.28,95%CI:-2.231-1.671,P=0.99448),1 week(MD=1.83,95%CI:0.0076-3.584,P=0.94588),2 weeks(MD=0.81,95%CI:-0.850-2.470,P=0.93055),3 weeks(MD=0.17,95%Cl:-2.771-3.111,P=0.99546)or 4 weeks(MD=-1.23,95%Cl:-4.647-2.187,P=0.98264)compared with the control group.Conclusion:Regulation of autophagy improves neurological function,whether it is upregulated or downregulated.There was no difference between upregulation and downregulation of autophagy in the treatment of spinal cord injury.The variability in results among the studies may be associated with differences in research methods,the lack of clearly defined autophagy characteristics after spinal cord injury,and the limited autophagy monitoring techniques.Thus,methods should be standardized,and the dynamic regulation of autophagy should be examined in future studies.
基金supported by the Xinjiang Production and Construction Corps Doctoral Fund of China,No.2014BB020
文摘After spinal cord injury,the number of glial cells and motor neurons expressing bone morphogenetic protein 7(BMP7)increases,indicating that upregulation of BMP7 can promote nerve repair.We,therefore,tested whether direct injection of BMP7 into acutely injured ratalalo createrywith 50 ng BMP7(BMP7 group)or physiological saline(control group)for 7 consecutive days.Electrophysiological examination showed that the amplitude of N1 in motor evoked potentials(MEP)decreased after spinal cord injury.At 8 weeks post-operation,the amplitude of N1 in the BMP7 group was remarkably higher than that at 1 week post-operation and was higher than that of the control group.Basso,Beattie,Bresnahan scale(BBB)scores,hematoxylin-eosin staining,and western blot assay showed that at 1,2,4 and 8 weeks post-operation,BBB scores were increased;Nissl body staining was stronger;the number of Nissl-stained bodies was increased;the number of vacuoles gradually decreased;the number of synapses was increased;and the expression of neuronal marker,neurofilament protein 200,was increased in the hind limbs of the BMP7 group compared with the control group.Western blot assay showed that the expression of GFAP protein in BMP7 group and control group did not change significantly and there was no significant difference between the BMP7 and control groups.These data confirmed that local injection of BMP7 can promote neuronal regeneration after spinal cord injury and promote recovery of motor function in rats.
文摘目的探讨注射硫酸软骨素酶ABC对成年大鼠脊髓损伤后不同时期后肢运动功能的恢复及腓肠肌运动终板内乙酰胆碱酯酶的影响。方法 10周龄Wistar雄性大鼠40只,采用脊髓半横断法制作模型,健侧作为对照组(A组),患侧随机分为单纯脊髓损伤组(B组)及术后注射硫酸软骨素酶ABC组(C组)。术后采用BBB评分法进行行为学观察,分别于损伤后3 d、7 d、14 d和28d各选取5只大鼠,酶化学染色法检测腓肠肌中乙酰胆碱酯酶(AChE)的表达。结果 C组在术后14~28 d BBB评分高于B组(P〈0.05);B组和C组与A组相比,腓肠肌AChE活性均降低,但C组于术后14~28 d AchE活性高于B组(P〈0.05)。结论大鼠脊髓损伤后注射硫酸软骨素酶可以提高AChE的活性,并可提高大鼠患肢的运动功能。
基金supported by the National Natural Science Foundation of China,No.81171147“Key Medical Talents of Qiangwei Project” Research Foundation of Health Department of Jiangsu Province of China,No.ZDRCA2016010+1 种基金“Xingwei Project” Key Personal Medical Research Foundation of Health Department of Jiangsu Province of China,No.RC201156Jiangsu Provincial Key Discipline of Medicine of China,No.XK201117(all to LXL)
文摘Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically relevant,standardized rat model of contusion SCI were identified by searching the PubMed,Embase and Cochrane databases,and the extracted data were analyzed by Stata 14.0.Data selection:Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso,Beattie,and Bresnahan lo-comotor rating scale.Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups.Outcome measures:The restoration of motor function was assessed by the Basso,Beattie,and Bresnahan locomotor rating scale.Results:We identified 1756 non-duplicated papers by searching the aforementioned electronic databases,and 30 full-text articles met the inclusion criteria.A total of 37 studies reported in the 30 articles were included in the meta-analysis.The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs,to a moderate extent(pooled standardized mean difference(SMD)=0.73;95%confidence interval(CI):0.47–1.00;P<0.001).NSCs obtained from different donor species(rat:SMD=0.74;95%CI:0.36–1.13;human:SMD=0.78;95%CI:0.31–1.25),at different donor ages(fetal:SMD=0.67;95%CI:0.43–0.92;adult:SMD=0.86;95%CI:0.50–1.22)and from different origins(brain-derived:SMD=0.59;95%CI:0.27–0.91;spinal cord-derived:SMD=0.51;95%CI:0.22–0.79)had similar efficacies on improved functional recovery;however,adult induced pluripotent stem cell-derived NSCs showed no significant efficacies.Furthermore,the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery(SMD=0.45;95%CI:0.21–0.70).However,shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies(acute:SMD=1.22;95%CI:0.81–1.63;subacute:SMD=0.75;95%CI:0.42–1.09).For chronic injuries,NSC implantation did not significantly improve functional recovery(SMD=0.25;95%CI:–0.16 to 0.65).Conclusion:NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.
基金supported by the Capital Characteristic Clinical Application Research Projects of Beijing Municipal Science and Technology Plan of China,No.Z16110000516009
文摘Decompression is the major therapeutic strategy for acute spinal cord injury,but there is some debate about the time window for decompression following spinal cord injury.An important goal and challenge in the treatment of spinal cord injury is inhibiting or reversing secondary injury.Governor Vessel electroacupuncture can improve symptoms of spinal cord injury by inhibiting cell apoptosis and improving the microenvironment of the injured spinal cord.In this study,Governor Vessel electroacupuncture combined with decompression at different time points was used to treat acute spinal cord injury.The rat models were established by inserting a balloon catheter into the atlanto-occipital space.The upper cervical spinal cord was compressed for 12 or 48 hours prior to decompression.Electroacupuncture was conducted at the acupoints Dazhui(GV14) and Baihui(GV 20)(2 Hz,15 minutes) once a day for 14 consecutive days.Compared with decompression alone,hind limb motor function recovery was superior after decompression for 12 and 48 hours combined with electroacupuncture.However,the recovery of motor function was not significantly different at 14 days after treatment in rats receiving decompression for 12 hours.Platelet-activating factor levels and caspase-9 protein expression were significantly reduced in rats receiving electroacupuncture compared with decompression alone.These findings indicate that compared with decompression alone,Governor Vessel electroacupuncture combined with delayed decompression(48 hours) is more effective in the treatment of upper cervical spinal cord injury.Governor Vessel electroacupuncture combined with early decompression(12 hours) can accelerate the recovery of nerve movement in rats with upper cervical spinal cord injury.Nevertheless,further studies are necessary to confirm whether it is possible to obtain additional benefit compared with early decompression alone.
基金supported by Department of Biotechnology,Ministry of Science&Technology,Government of India
文摘Spinal cord injury (SCI) is a devastating condition with loss of motor and sensory functions below the injury level. Cell based therapies are experimented in pre-clinical studies around the world. Neural stem cells are located intra-craniafly in subventricular zone and hippocampus which are highly invasive sourc- es. The olfactory epithelium is a neurogenic tissue where neurogenesis takes place throughout the adult life by a population of stem/progenitor cells. Easily accessible olfactory neuroepithelial stem/progenitor cells are an attractive cell source for transplantation in SCI. Globose basal cells (GBCs) were isolated from rat olfactory epithelium, characterized by flow cytometry and immunohistochemically. These ceils were further studied for neurosphere formation and neuronal induction. T10 laminectomy was done to create drop-weight SCI in rats. On the 9th day following SCI, 5 × 105 cells were transplanted into injured rat spinal cord. The outcome of transplantation was assessed by the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, motor evoked potential and histological observation. GBCs expressed neural stem cell markers nestin, SOX2, NCAM and also mesenchymal stem cell markers (CD29, CD54, CD90, CD73, CD105). These cells formed neurosphere, a culture characteristics of NSCs and on induction, differentiated cells expressed neuronal markers ~III tubulin, microtubule-associated protein 2, neuronal nuclei, and neurofilament. GBCs transplanted rats exhibited hindlimb motor recovery as confirmed by BBB score and gastrocnemius muscle electromyography amplitude was increased compared to controls. Green fluorescent protein labelled GBCs survived around the injury epicenter and differentiated into βⅢ tubulin-immunoreactive neuron-like cells. GBCs could be an alternative to NSCs from an accessible source for autologous neurotransplantation after SCI without ethical issues.