Goethitic bauxite is a widely used raw material in the alumina industry.It is an essential prerequisite to clarify the effect of Ti-and Si-containing minerals on goethite transformation in the Bayer digestion process,...Goethitic bauxite is a widely used raw material in the alumina industry.It is an essential prerequisite to clarify the effect of Ti-and Si-containing minerals on goethite transformation in the Bayer digestion process,which could efficiently utilize the Fe-and Al-containing minerals present in goethitic bauxite.In this work,the interactions between anatase or kaolinite with goethite during various Bayer digestion processes were investigated using X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),transmission electron microscopy (TEM),and scanning electron microscopy (SEM).The results showed that anatase and kaolinite hindered the transformation of goethite.Anatase exerted more significant effects than kaolinite due to the dense sodium titanate layer on the goethite surface after reacting with the sodium aluminate solution.Adding the reductant hydrazine hydrate could eliminate the retarding effect by inducing the transformation of goethite into magnetite.In this process,titanium was embedded into the magnetite lattice to form Ti-containing magnetite.Furthermore,the weakening of the interaction between magnetite and sodium aluminosilicate hydrate reduced the influence of kaolinite.As a validation of the above results,the reductive Bayer method resulted in the transformation of goethite into goethitic bauxite with 98.87% relative alumina digestion rate.The obtained red mud with 72.99wt% Fe2O3could be further utilized in the steel industry.This work provides a clear understanding of the transformative effects of Ti-and Si-containing minerals on iron mineral transformation and aids the comprehensive use of iron and aluminum in goethitic bauxite subjected to the reductive Bayer method.展开更多
The aim of this study is to enhance the value and utilization of red mud generated in the Bayer process by preparing composite cement mortars.The effects of two different types of Bayer red mud with varying physical a...The aim of this study is to enhance the value and utilization of red mud generated in the Bayer process by preparing composite cement mortars.The effects of two different types of Bayer red mud with varying physical and chemical characteristics on the fluidity,mechanical strength,mineral composition,and microstructure of the composite cement mortar were systematically evaluated.The results showed that the optimal addition of red mud A was 10 wt%,while it was 20 wt% for red mud B.The mechanical properties of the composite cement mortar met the standards for P·O42.5 cement.Furthermore,the composite mortar with the addition of red mud B showed higher flexural and compressive strengths compared to the composite mortar with red mud A.This improvement is attributed to the smaller particle size of red mud B,which filled the micro-pores and increased the compactness of the cement stone,as well as its higher content of Na_(2)O,K_(2)O,and other free alkalis,which resulted in more obvious alkali activation,accelerating the hydration of the active minerals in the slurry.展开更多
Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina productio...Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina production.The reaction behaviors of hydrothermal reduction of ferric oxide in alkali solution were studied by both thermodynamic calculation and experimental investigation.The thermodynamic calculation indicates that Fe3O4 can be formed by the conversion of Fe2O3 at proper redox potentials in alkaline solution.The experimental results show that the formation ratio of Fe3O4 either through the reaction of Fe and Fe2O3 or through the reaction of Fe and H2O in alkaline aqueous solution increases remarkably with raising the temperature and alkali concentration,suggesting that Fe(OH)3- and Fe(OH)4- form by dissolving Fe and Fe2O3,respectively,in alkaline aqueous solution and further react to form Fe3O4.Moreover,aluminate ions have little influence on the hydrothermal reduction of Fe2O3 in alkaline aqueous solution,and converting iron minerals to magnetite can be realized in the Bayer digestion process of diasporic bauxite.展开更多
Surface tension of sodium aluminate solution and the contact angle between Al(OH)3 particles and aluminate solution were measured, then the dependence of Al(OH)3 solubility on its particle size was calculated and ...Surface tension of sodium aluminate solution and the contact angle between Al(OH)3 particles and aluminate solution were measured, then the dependence of Al(OH)3 solubility on its particle size was calculated and thus the variation of the critical nucleus sizes was determined based on the Ostwald ripening formula. The results show that the Al(OH)3 solubility in sodium aluminate solution decreases with the increment of particle size, and the critical nucleus sizes increase with the rise of alkali concentration, caustic ratio and precipitation temperature. The results also imply that the presence of small particles in seeded precipitation system is an important factor to limit the depth of precipitation.展开更多
基金the financial support provided by the National Natural Science Foundation of China (No.52104353)the National Key Research and Development Program of China (No.2022YFC3900900)。
文摘Goethitic bauxite is a widely used raw material in the alumina industry.It is an essential prerequisite to clarify the effect of Ti-and Si-containing minerals on goethite transformation in the Bayer digestion process,which could efficiently utilize the Fe-and Al-containing minerals present in goethitic bauxite.In this work,the interactions between anatase or kaolinite with goethite during various Bayer digestion processes were investigated using X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),transmission electron microscopy (TEM),and scanning electron microscopy (SEM).The results showed that anatase and kaolinite hindered the transformation of goethite.Anatase exerted more significant effects than kaolinite due to the dense sodium titanate layer on the goethite surface after reacting with the sodium aluminate solution.Adding the reductant hydrazine hydrate could eliminate the retarding effect by inducing the transformation of goethite into magnetite.In this process,titanium was embedded into the magnetite lattice to form Ti-containing magnetite.Furthermore,the weakening of the interaction between magnetite and sodium aluminosilicate hydrate reduced the influence of kaolinite.As a validation of the above results,the reductive Bayer method resulted in the transformation of goethite into goethitic bauxite with 98.87% relative alumina digestion rate.The obtained red mud with 72.99wt% Fe2O3could be further utilized in the steel industry.This work provides a clear understanding of the transformative effects of Ti-and Si-containing minerals on iron mineral transformation and aids the comprehensive use of iron and aluminum in goethitic bauxite subjected to the reductive Bayer method.
基金the Guangxi Science and Technology Program(Guike AD21220052,AD22035126 and AB22035064)National Natural Science Foundation of China(52062009)Guangxi Key Laboratory of New Energy and Building Energy Saving(Guikeneng 22-J-21-19).
文摘The aim of this study is to enhance the value and utilization of red mud generated in the Bayer process by preparing composite cement mortars.The effects of two different types of Bayer red mud with varying physical and chemical characteristics on the fluidity,mechanical strength,mineral composition,and microstructure of the composite cement mortar were systematically evaluated.The results showed that the optimal addition of red mud A was 10 wt%,while it was 20 wt% for red mud B.The mechanical properties of the composite cement mortar met the standards for P·O42.5 cement.Furthermore,the composite mortar with the addition of red mud B showed higher flexural and compressive strengths compared to the composite mortar with red mud A.This improvement is attributed to the smaller particle size of red mud B,which filled the micro-pores and increased the compactness of the cement stone,as well as its higher content of Na_(2)O,K_(2)O,and other free alkalis,which resulted in more obvious alkali activation,accelerating the hydration of the active minerals in the slurry.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina production.The reaction behaviors of hydrothermal reduction of ferric oxide in alkali solution were studied by both thermodynamic calculation and experimental investigation.The thermodynamic calculation indicates that Fe3O4 can be formed by the conversion of Fe2O3 at proper redox potentials in alkaline solution.The experimental results show that the formation ratio of Fe3O4 either through the reaction of Fe and Fe2O3 or through the reaction of Fe and H2O in alkaline aqueous solution increases remarkably with raising the temperature and alkali concentration,suggesting that Fe(OH)3- and Fe(OH)4- form by dissolving Fe and Fe2O3,respectively,in alkaline aqueous solution and further react to form Fe3O4.Moreover,aluminate ions have little influence on the hydrothermal reduction of Fe2O3 in alkaline aqueous solution,and converting iron minerals to magnetite can be realized in the Bayer digestion process of diasporic bauxite.
基金Project(51274242)supported by the National Natural Science Foundation of China
文摘Surface tension of sodium aluminate solution and the contact angle between Al(OH)3 particles and aluminate solution were measured, then the dependence of Al(OH)3 solubility on its particle size was calculated and thus the variation of the critical nucleus sizes was determined based on the Ostwald ripening formula. The results show that the Al(OH)3 solubility in sodium aluminate solution decreases with the increment of particle size, and the critical nucleus sizes increase with the rise of alkali concentration, caustic ratio and precipitation temperature. The results also imply that the presence of small particles in seeded precipitation system is an important factor to limit the depth of precipitation.