在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein...在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein(BB)迭代算法来避免矩阵求逆运算,提出了结构简单的BB迭代信号检测算法,且基于信道硬化特性进一步优化了迭代初始解以加快算法的收敛速度。理论和仿真结果表明,所提出的BB迭代算法的性能优于最近提出的Neumann级数展开算法,而其复杂度相比截短阶数i=3的Neumann级数展开算法减少了一个数量级;且该算法收敛速度较快,在给定初始值的条件下,通过简单的几次迭代,能够快速接近MMSE算法的检测性能。展开更多
针对时间反演多址系统中信道的相关性会导致多用户干扰的问题,以降低用户间干扰和算法复杂度为目标,提出基于Barzilai-Borwein的共轭梯度迭代检测算法。首先通过共轭梯度迭代两次找到最速下降方向,然后通过Barzilai-Borwein沿着共轭梯...针对时间反演多址系统中信道的相关性会导致多用户干扰的问题,以降低用户间干扰和算法复杂度为目标,提出基于Barzilai-Borwein的共轭梯度迭代检测算法。首先通过共轭梯度迭代两次找到最速下降方向,然后通过Barzilai-Borwein沿着共轭梯度搜索的方向继续迭代。仿真表明,所提算法收敛速度快于Barzilai-Borwein和共轭梯度算法,且复杂度低于共轭梯度算法和最小均方误差(minimum mean square error,MMSE)算法,保持在O(N2)。展开更多
文摘在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein(BB)迭代算法来避免矩阵求逆运算,提出了结构简单的BB迭代信号检测算法,且基于信道硬化特性进一步优化了迭代初始解以加快算法的收敛速度。理论和仿真结果表明,所提出的BB迭代算法的性能优于最近提出的Neumann级数展开算法,而其复杂度相比截短阶数i=3的Neumann级数展开算法减少了一个数量级;且该算法收敛速度较快,在给定初始值的条件下,通过简单的几次迭代,能够快速接近MMSE算法的检测性能。
文摘针对时间反演多址系统中信道的相关性会导致多用户干扰的问题,以降低用户间干扰和算法复杂度为目标,提出基于Barzilai-Borwein的共轭梯度迭代检测算法。首先通过共轭梯度迭代两次找到最速下降方向,然后通过Barzilai-Borwein沿着共轭梯度搜索的方向继续迭代。仿真表明,所提算法收敛速度快于Barzilai-Borwein和共轭梯度算法,且复杂度低于共轭梯度算法和最小均方误差(minimum mean square error,MMSE)算法,保持在O(N2)。