Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to...Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to search for the appropriate structure or composition of the product with desired property, which is an optimization problem. In this paper, a global optimization method of using the a BB algorithm to solve the backward problem is presented. In particular, a convex lower bounding function is constructed for the objective function formulated with BP-NN model, and the calculation of the key parameter a is implemented by recurring to the interval Hessian matrix of the objective function. Two case studies involving the design of dopamine β-hydroxylase (DβH) inhibitors and linear low density polyethylene (LLDPE) nano composites are investigated using the proposed method.展开更多
在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein...在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein(BB)迭代算法来避免矩阵求逆运算,提出了结构简单的BB迭代信号检测算法,且基于信道硬化特性进一步优化了迭代初始解以加快算法的收敛速度。理论和仿真结果表明,所提出的BB迭代算法的性能优于最近提出的Neumann级数展开算法,而其复杂度相比截短阶数i=3的Neumann级数展开算法减少了一个数量级;且该算法收敛速度较快,在给定初始值的条件下,通过简单的几次迭代,能够快速接近MMSE算法的检测性能。展开更多
文摘Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to search for the appropriate structure or composition of the product with desired property, which is an optimization problem. In this paper, a global optimization method of using the a BB algorithm to solve the backward problem is presented. In particular, a convex lower bounding function is constructed for the objective function formulated with BP-NN model, and the calculation of the key parameter a is implemented by recurring to the interval Hessian matrix of the objective function. Two case studies involving the design of dopamine β-hydroxylase (DβH) inhibitors and linear low density polyethylene (LLDPE) nano composites are investigated using the proposed method.
文摘在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein(BB)迭代算法来避免矩阵求逆运算,提出了结构简单的BB迭代信号检测算法,且基于信道硬化特性进一步优化了迭代初始解以加快算法的收敛速度。理论和仿真结果表明,所提出的BB迭代算法的性能优于最近提出的Neumann级数展开算法,而其复杂度相比截短阶数i=3的Neumann级数展开算法减少了一个数量级;且该算法收敛速度较快,在给定初始值的条件下,通过简单的几次迭代,能够快速接近MMSE算法的检测性能。