期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
使用多特征融合的心律失常分类方法
1
作者 梁国祥 韩亮 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期109-115,共7页
心律失常是一种常见的心血管疾病,它会严重影响患者的生活质量和生命安全。利用心电信号(ECG)进行心律失常自动分类对于其及时诊断与防治具有重要意义。为此,提出一种使用多特征融合的心律失常分类方法。首先从去噪后的心电信号中分别... 心律失常是一种常见的心血管疾病,它会严重影响患者的生活质量和生命安全。利用心电信号(ECG)进行心律失常自动分类对于其及时诊断与防治具有重要意义。为此,提出一种使用多特征融合的心律失常分类方法。首先从去噪后的心电信号中分别提取短时傅里叶(STFT)特征和小波(WT)特征。然后将STFT特征输入分支聚合残差网络(BCAR-NET)进行特征提取,获得其深度STFT特征;将WT特征输入1D-CNN网络,获得其深度WT特征;将原始ECG输入LSTM网络,获得其深度ECG特征。最后使用全连接网络将3种深度特征进行拼接和融合,进而实现心律失常分类。使用MIT-BIH心律失常数据库进行实验,所提出的使用多特征融合的心律失常分类方法的准确率为98.66%,F_1分数的宏平均为94.22%,优于传统心律失常分类方法。实验结果表明,所构建的多特征融合网络有效利用了深度STFT特征、WT特征和ECG特征之间的互补性,提升了心律失常的分类性能。 展开更多
关键词 心律失常 多特征融合 分支聚合残差网络 短时傅里叶变换 小波变换
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部