Taking Ta–W alloy system as an example, the concentration formulae of alloy genes of DO3-type alloys in BCC structures were derived on the basis of the theory of alloy genes and the number of coordination atoms. The ...Taking Ta–W alloy system as an example, the concentration formulae of alloy genes of DO3-type alloys in BCC structures were derived on the basis of the theory of alloy genes and the number of coordination atoms. The concentrations of alloy genes of DO3-TaW3 and DO3-Ta3W ordered alloys were calculated as functions of composition xW and ordering degree (s). When s=smax, the concentrations of alloy genes of stoichiometric DO3-TaW3 compound are equal to those of alloys, that is, x8^Ta=0.25(at),x4^W=0.5(at),x8^W=0.25(at)The concentrations of alloy genes of stoichiometric DO3-Ta3W compound are also equal to those of alloys, that is,x0^Ta=0.25(at),x4^Ta=0.5(at),x0^W=0.25(at). As ordering degree decreases, alloy genes of DO3-TaW3 and DO3-Ta3W ordered alloys will split. And the degree of splitting of alloy genes increases with the ordering degree decreasing. The atomic states and properties of DO3-TaW3 and DO3-Ta3W ordered alloys were calculated as a function of composition xW. The reason was pointed out that preparation of DO3-TaW3 and DO3-Ta3W intermetallic compounds is difficult due to small differences in their cohesive energies. It will provide theoretical guidance for the scientific designation to new candidate for ultra- high-temperature materials in areo-engine applications.展开更多
In this paper, taking Nb-Mo alloy system as an example, the equations of concentration of characteristic atoms of alloys in BCC structure were obtained on the basis of the idea of systematic science of alloys and the ...In this paper, taking Nb-Mo alloy system as an example, the equations of concentration of characteristic atoms of alloys in BCC structure were obtained on the basis of the idea of systematic science of alloys and the number of coordination atoms. The concentrations of characteristic atoms in B2-NbMo type ordered alloys were calculated as functions of ordering degree(s) and composition Xuo. When S=Smax, the concentrations of characteristic atoms of stoichiometric B2-NbMo intermetallic compound are equal to that of alloys, that is, X8^Nb = 0.5 at, X0^Mo= 0.5 at. As ordering degree decreases, characteristic atoms A8^Nb and A0^Mo of B2-NbMo type ordered alloy split. And the degree of splitting of characteristic atoms increases with the ordering degree decreasing. Therefore, disordered alloys and various types of ordered alloys can be designed.展开更多
Based on the idea of systematic science of alloys, we derived the interaction equations of binary alloys in BCC structure in this paper. According to the basic information of characteristic atoms sequences and charact...Based on the idea of systematic science of alloys, we derived the interaction equations of binary alloys in BCC structure in this paper. According to the basic information of characteristic atoms sequences and characteristic crystals sequences of Nb-Mo alloy system and the concentrations of characteristic atoms of Nb-Mo alloy system, the properties of DO3-Nb3Mo type ordered alloys, B2-NbMo type ordered alloys and DO3-NbMo3 type ordered alloys and disordered alloys were calcu-lated. The results show that the properties of ordered alloys exhibit stronger variations than those of disordered Nb(1-x)Mox alloys when approaching the stoichiometric ratio, whereas the opposite trend occurs when deviating from the stoichiometric ratio. The main reason is that the ordering degree is maximal at the stoichiometric ratio while it decreases linearly when deviating from stoichiometric ratio. On the contrary, the number of bonding electrons among atoms increases with the simultaneous decreasing of the nearly free electrons, which shortens the bond lengths and thus strengthens the crystal bonding.展开更多
Improving structures involves comparing old and new designs on a key parameter.Calculating the percent change in performance is a method to assess.This paper proposes a cost-effective analogy by generating replicas of...Improving structures involves comparing old and new designs on a key parameter.Calculating the percent change in performance is a method to assess.This paper proposes a cost-effective analogy by generating replicas of additive manufactured aluminum alloy(Al Si10Mg)body-centered cubic lattice(BCC)based turbine blade(T106C)with the same in poly-lactic acid(PLA)material and their comparison in the context of percent change for natural frequencies.Initially,a cavity is created inside the turbine blade(hollow blade).Natural frequencies are obtained experimentally and numerically by incorporating BCC at 50%and 80%of the cavity length into the hollow blade for both materials.The cost of manufacturing the metal blades is 90%more than that of the PLA blades.The two material blade designs show a similar percentage variation,as the first-order mode enhancs more than 5%and the second-order mode more than 4%.To observe the behavior in another material,both blades are analyzed numerically with a nickel-based U-500 material,and the same result is achieved,describing that percent change between designs can be verified using the PLA material.展开更多
基金Project(50954006) supported by the National Natural Science Foundation of ChinaProject(2014-12) supported by the Environmental Protection Department of Hunan,China+1 种基金Project(2016TP1007) supported by the Hunan Provincial Science and Technology Plan Project,ChinaProject(2016-01) supported by the Development and Reform Commission of Hunan Province,China
文摘Taking Ta–W alloy system as an example, the concentration formulae of alloy genes of DO3-type alloys in BCC structures were derived on the basis of the theory of alloy genes and the number of coordination atoms. The concentrations of alloy genes of DO3-TaW3 and DO3-Ta3W ordered alloys were calculated as functions of composition xW and ordering degree (s). When s=smax, the concentrations of alloy genes of stoichiometric DO3-TaW3 compound are equal to those of alloys, that is, x8^Ta=0.25(at),x4^W=0.5(at),x8^W=0.25(at)The concentrations of alloy genes of stoichiometric DO3-Ta3W compound are also equal to those of alloys, that is,x0^Ta=0.25(at),x4^Ta=0.5(at),x0^W=0.25(at). As ordering degree decreases, alloy genes of DO3-TaW3 and DO3-Ta3W ordered alloys will split. And the degree of splitting of alloy genes increases with the ordering degree decreasing. The atomic states and properties of DO3-TaW3 and DO3-Ta3W ordered alloys were calculated as a function of composition xW. The reason was pointed out that preparation of DO3-TaW3 and DO3-Ta3W intermetallic compounds is difficult due to small differences in their cohesive energies. It will provide theoretical guidance for the scientific designation to new candidate for ultra- high-temperature materials in areo-engine applications.
基金supported by the National Natural Science Foundation of China(Grant No.50954006)Hunan Science and Technology Department (Grant No.2009GK3152)+1 种基金Hunan Provincial Construction Department (Grant No.201012)Hunan Provincial Education Department(Grant No.21KZ)
文摘In this paper, taking Nb-Mo alloy system as an example, the equations of concentration of characteristic atoms of alloys in BCC structure were obtained on the basis of the idea of systematic science of alloys and the number of coordination atoms. The concentrations of characteristic atoms in B2-NbMo type ordered alloys were calculated as functions of ordering degree(s) and composition Xuo. When S=Smax, the concentrations of characteristic atoms of stoichiometric B2-NbMo intermetallic compound are equal to that of alloys, that is, X8^Nb = 0.5 at, X0^Mo= 0.5 at. As ordering degree decreases, characteristic atoms A8^Nb and A0^Mo of B2-NbMo type ordered alloy split. And the degree of splitting of characteristic atoms increases with the ordering degree decreasing. Therefore, disordered alloys and various types of ordered alloys can be designed.
基金supported by the National Natural Science Foundation of China (Grant No. 50954006)Hunan Science and Technology Department (Grant No. 2010RS4015)+2 种基金Hunan Provincial Construction Department (Grant No. 201012)Hunan Provincial Education Department (Grant No. 21KZ)Changsha City Science and Technology Department (GrantNo. K1003048-11)
文摘Based on the idea of systematic science of alloys, we derived the interaction equations of binary alloys in BCC structure in this paper. According to the basic information of characteristic atoms sequences and characteristic crystals sequences of Nb-Mo alloy system and the concentrations of characteristic atoms of Nb-Mo alloy system, the properties of DO3-Nb3Mo type ordered alloys, B2-NbMo type ordered alloys and DO3-NbMo3 type ordered alloys and disordered alloys were calcu-lated. The results show that the properties of ordered alloys exhibit stronger variations than those of disordered Nb(1-x)Mox alloys when approaching the stoichiometric ratio, whereas the opposite trend occurs when deviating from the stoichiometric ratio. The main reason is that the ordering degree is maximal at the stoichiometric ratio while it decreases linearly when deviating from stoichiometric ratio. On the contrary, the number of bonding electrons among atoms increases with the simultaneous decreasing of the nearly free electrons, which shortens the bond lengths and thus strengthens the crystal bonding.
基金supported by the National Natural Science Foundation of China(No.12111540251)。
文摘Improving structures involves comparing old and new designs on a key parameter.Calculating the percent change in performance is a method to assess.This paper proposes a cost-effective analogy by generating replicas of additive manufactured aluminum alloy(Al Si10Mg)body-centered cubic lattice(BCC)based turbine blade(T106C)with the same in poly-lactic acid(PLA)material and their comparison in the context of percent change for natural frequencies.Initially,a cavity is created inside the turbine blade(hollow blade).Natural frequencies are obtained experimentally and numerically by incorporating BCC at 50%and 80%of the cavity length into the hollow blade for both materials.The cost of manufacturing the metal blades is 90%more than that of the PLA blades.The two material blade designs show a similar percentage variation,as the first-order mode enhancs more than 5%and the second-order mode more than 4%.To observe the behavior in another material,both blades are analyzed numerically with a nickel-based U-500 material,and the same result is achieved,describing that percent change between designs can be verified using the PLA material.