期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ASD统计降尺度方法在中国东部季风区典型流域的适用性分析 被引量:2
1
作者 刘品 徐宗学 +1 位作者 李秀萍 王时震 《水文》 CSCD 北大核心 2013年第4期1-9,共9页
ASD(Automated Statistical Downscaling)是一种基于回归分析的统计降尺度方法。应用ASD方法,选取东部季风区3个典型流域地面观测资料、ERA-40再分析资料,建立预报量与大气环流因子之间的统计关系,对日降水量和日平均、最高、最低气温... ASD(Automated Statistical Downscaling)是一种基于回归分析的统计降尺度方法。应用ASD方法,选取东部季风区3个典型流域地面观测资料、ERA-40再分析资料,建立预报量与大气环流因子之间的统计关系,对日降水量和日平均、最高、最低气温进行模拟,并评价模型对不同流域不同变量的模拟效果,分析其适用性。结果表明,ASD模型能较好模拟出各地面变量的时间序列演变规律及空间分布特征,对气温变量的模拟效果优于降水变量。模型对水文气象特征各异的三个流域模拟效果均较好,同时有所差异,这与各流域不同的地理、气象因素有关。以上结果说明,ASD模型在东部季风区适用性较好,可应用于构建未来气候变化情景及为水文模拟提供输入资料等相关方面。 展开更多
关键词 气候变化 东部季风区 统计降尺度 ASD ERA-40 bccr
下载PDF
Statistical Downscaling of Precipitation and Temperature Using Long Ashton Research Station Weather Generator in Zambia: A Case of Mount Makulu Agriculture Research Station
2
作者 Charles Bwalya Chisanga Elijah Phiri Vernon R. N. Chinene 《American Journal of Climate Change》 2017年第3期487-512,共26页
The Long Ashton Research Station Weather Generator (LARS-WG) is a stochastic weather generator used for the simulation of weather data at a single site under both current and future climate conditions using General Ci... The Long Ashton Research Station Weather Generator (LARS-WG) is a stochastic weather generator used for the simulation of weather data at a single site under both current and future climate conditions using General Circulation Models (GCM). It was calibrated using the baseline (1981-2010) and evaluated to determine its suitability in generating synthetic weather data for 2020 and 2055 according to the projections of HadCM3 and BCCR-BCM2 GCMs under SRB1 and SRA1B scenarios at Mount Makulu (Latitude: 15.550°S, Longitude: 28.250°E, Elevation: 1213 meter), Zambia. Three weather parameters—precipitation, minimum and maximum temperature were simulated using LARS-WG v5.5 for observed station and AgMERRA reanalysis data for Mount Makulu. Monthly means and variances of observed and generated daily precipitation, maximum temperature and minimum temperature were used to evaluate the suitability of LARS-WG. Other climatic conditions such as wet and dry spells, seasonal frost and heat spells distributions were also used to assess the performance of the model. The results showed that these variables were modeled with good accuracy and LARS-WG could be used with high confidence to reproduce the current and future climate scenarios. Mount Makulu did not experience any seasonal frost. The average temperatures for the baseline (Observed station data: 1981-2010 and AgMERRA reanalysis: 1981-2010) were 21.33°C and 22.21°C, respectively. Using the observed station data, the average temperature under SRB1 (2020), SRA1B (2020), SRB1 (2055), SRA1B (2055) would be 21.90°C, 21.94°C, 22.83°C and 23.18°C, respectively. Under the AgMERRA reanalysis, the average temperatures would be 22.75°C (SRB1: 2020), 22.80°C (SRA1B: 2020), 23.69°C (SRB1: 2055) and 24.05°C (SRA1B: 2055). The HadCM3 and BCM2 GCMs ensemble mean showed that the number of days with precipitation would increase while the mean precipitation amount in 2020s and 2050s under SRA1B would reduce by 6.19% to 6.65%. Precipitation would increase under SRB1 (Observed), SRA1B, and SRB1 (AgMERRA) from 0.31% to 5.2% in 2020s and 2055s, respectively. 展开更多
关键词 LARS-WG Statistical DOWNSCALING Climate Change Scenarios HadCM3 bccr-BCM2 GCMS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部