基于国家气候中心第二代季节预测模式的历史回报试验数据,检验了模式对我国东部夏季降水的预测能力,探讨了预测误差形成的可能原因,并应用降尺度方法提高了模式的降水预测技巧。分析表明:(1)模式能在一定程度上把握我国东部夏季降水时...基于国家气候中心第二代季节预测模式的历史回报试验数据,检验了模式对我国东部夏季降水的预测能力,探讨了预测误差形成的可能原因,并应用降尺度方法提高了模式的降水预测技巧。分析表明:(1)模式能在一定程度上把握我国东部夏季降水时空变率的两个主要模态(偶极子型模态和全区一致型模态),但是不同超前时间的预测在刻画模态方差贡献、异常空间分布特征、时间系数的年际变化等方面存在明显误差;(2)模式能够合理预测大尺度环流和海表温度(SST)的变化特征,但是对中国东部夏季降水的总体预测技巧有限,这与模式不能准确刻画西太平洋副热带高压、大陆高压、中高纬阻塞高压等环流系统以及热带太平洋、印度洋SST变率对中国东部降水模态的影响有关;(3)针对1991~2003年回报试验数据中的500 h Pa位势高度、850 h Pa纬向风和经向风、SST变量,在全球范围内寻找并定位与中国东部站点降水关系最密切的预报因子,进而建立针对降水预测的单因子线性回归、多因子逐步和多元回归模型。采用2004~2013年回报试验对所建立的降水预测模型进行了独立检验,结果表明:所建立的降尺度预测模型能显著提高中国东部地区夏季降水的预报技巧。以6月1日起报试验为例,预测的第一模态(第二模态)与观测的空间相关系数由原始的0.12(0.48)提高到了0.58(0.80),时间相关系数则从0.47(0.15)提高到0.80(0.67);其它超前时间的预测试验中,降尺度预测模型的降水预测技巧相比模式原始预测技巧也同样明显提高。展开更多
基于国家气候中心气候系统模式(Beijing Climate Center Climate System Model,BCC_CSM1.1m)和美国NCEP/NCAR的气候预测模式(The NCEP Climate Forecast System Version 2,CFSv2)分别建立针对长江流域汛期降水的动力与统计相结合的降尺...基于国家气候中心气候系统模式(Beijing Climate Center Climate System Model,BCC_CSM1.1m)和美国NCEP/NCAR的气候预测模式(The NCEP Climate Forecast System Version 2,CFSv2)分别建立针对长江流域汛期降水的动力与统计相结合的降尺度预测模型,并比较两模式对应模型的预报技巧和差异来源。分别选择两模式2月起报的500 hPa及200 hPa全球位势高度场为预报因子,结合年际增量及经验正交分解(EOF)迭代法建立降尺度模型(分别简称DY_CSM1.1m和DY_CFSv2),研究发现:(1) EOF迭代法中截断解释方差的递增增加了预报因子的协同性和稳定性,从而显著提高预报技巧,并由此确定98%的截断解释方差为模型的最优参数。(2)两模型基于最优参数的预测效果均优于模式原始的降水预测,其中DY_CSM1.1m预测技巧更高,对应29 a距平相关系数(ACC)平均评分可达0.43,尤其在长江干流区域预报效果显著提高。将两模型预测的降水年际增量百分率转换为降水距平百分率时,ACC多年平均评分降为0.27和0.22,仍高于模式原始预测。(3) DY_CSM1.1m的ACC历年评分和长江流域汛期降水年际增量均与西太平洋副热带高压的一系列指数具有高相关性(以西太平洋副高脊线位置指数为例,DY_CFSv2则无此关系),因此BCC_CSM1.1m在西太平洋地区模拟性能优于CFSv2是导致该模式降尺度后预报技巧更高的重要原因,这一点在典型洪涝年1998和2020年中得以佐证。展开更多
文摘基于国家气候中心第二代季节预测模式的历史回报试验数据,检验了模式对我国东部夏季降水的预测能力,探讨了预测误差形成的可能原因,并应用降尺度方法提高了模式的降水预测技巧。分析表明:(1)模式能在一定程度上把握我国东部夏季降水时空变率的两个主要模态(偶极子型模态和全区一致型模态),但是不同超前时间的预测在刻画模态方差贡献、异常空间分布特征、时间系数的年际变化等方面存在明显误差;(2)模式能够合理预测大尺度环流和海表温度(SST)的变化特征,但是对中国东部夏季降水的总体预测技巧有限,这与模式不能准确刻画西太平洋副热带高压、大陆高压、中高纬阻塞高压等环流系统以及热带太平洋、印度洋SST变率对中国东部降水模态的影响有关;(3)针对1991~2003年回报试验数据中的500 h Pa位势高度、850 h Pa纬向风和经向风、SST变量,在全球范围内寻找并定位与中国东部站点降水关系最密切的预报因子,进而建立针对降水预测的单因子线性回归、多因子逐步和多元回归模型。采用2004~2013年回报试验对所建立的降水预测模型进行了独立检验,结果表明:所建立的降尺度预测模型能显著提高中国东部地区夏季降水的预报技巧。以6月1日起报试验为例,预测的第一模态(第二模态)与观测的空间相关系数由原始的0.12(0.48)提高到了0.58(0.80),时间相关系数则从0.47(0.15)提高到0.80(0.67);其它超前时间的预测试验中,降尺度预测模型的降水预测技巧相比模式原始预测技巧也同样明显提高。
文摘基于国家气候中心气候系统模式(Beijing Climate Center Climate System Model,BCC_CSM1.1m)和美国NCEP/NCAR的气候预测模式(The NCEP Climate Forecast System Version 2,CFSv2)分别建立针对长江流域汛期降水的动力与统计相结合的降尺度预测模型,并比较两模式对应模型的预报技巧和差异来源。分别选择两模式2月起报的500 hPa及200 hPa全球位势高度场为预报因子,结合年际增量及经验正交分解(EOF)迭代法建立降尺度模型(分别简称DY_CSM1.1m和DY_CFSv2),研究发现:(1) EOF迭代法中截断解释方差的递增增加了预报因子的协同性和稳定性,从而显著提高预报技巧,并由此确定98%的截断解释方差为模型的最优参数。(2)两模型基于最优参数的预测效果均优于模式原始的降水预测,其中DY_CSM1.1m预测技巧更高,对应29 a距平相关系数(ACC)平均评分可达0.43,尤其在长江干流区域预报效果显著提高。将两模型预测的降水年际增量百分率转换为降水距平百分率时,ACC多年平均评分降为0.27和0.22,仍高于模式原始预测。(3) DY_CSM1.1m的ACC历年评分和长江流域汛期降水年际增量均与西太平洋副热带高压的一系列指数具有高相关性(以西太平洋副高脊线位置指数为例,DY_CFSv2则无此关系),因此BCC_CSM1.1m在西太平洋地区模拟性能优于CFSv2是导致该模式降尺度后预报技巧更高的重要原因,这一点在典型洪涝年1998和2020年中得以佐证。