The catalytic performance of co mmonly used heteropolyacids (H3PW12O40, H4SiW12O40 and H3PMO12O40 synthesis of 4,4'-methylenedianiline (4,4'-MDA) from aniline and formaldehyde was evaluated and the result showed ...The catalytic performance of co mmonly used heteropolyacids (H3PW12O40, H4SiW12O40 and H3PMO12O40 synthesis of 4,4'-methylenedianiline (4,4'-MDA) from aniline and formaldehyde was evaluated and the result showed that H4SiW12O40 with moderate acid strength exhibited the best catalytic performance. Then HaSiW12O40@MIL-100(Fe) was prepared by encapsulating H4SiW12O40 within the pores of MIL-100(Fe) to facilitate its recovery and reuse. The prepared H4SiW12O40@MIL-100(Fe) was characterized by means of FT-IR, N2 adsorption-desorption, XRD, TG and then the catalytic performance was evaluated. The result showed that H4SiW12O40 was highly dispersed in the pores of MIL-100(Fe), and both the Keggin structure of HaSiW12O40 and the crystal skeleton structure of MIL-100(Fe) could be effectively/preserved. Furthermore, H4SiW12O40@ MIL-100(Fe) showed excellent catalytic performance under the following reaction conditions: a molar ratio of aniline to formaldehyde = 5, a mass ratio of catalyst to formaldehyde = 1.2, a reaction temperature of 120 ℃ and a reaction time of 6 h. Under the above reaction conditions, the conversion of aniline was 41.1%, and the yield and selectivity of 4,4'-MDA were 81,6% and 79.2%, respectively. Unfortunately, an appreciable loss in the catalytic activity of the recovered H4SiW12O40@MIL-100(Fe) was observed because of the blocking of the pores and the change of the acidity resulted from the adsorption of alkaline organics such as aniline and 4,4'-MDA. The adsorbed alkaline organics could be cleaned up when the recovered catalyst was washed by methanol and DMF. Then the catalyst was effectively reused up to three cycles without much loss in its activity.展开更多
在Horizone工艺装置使用BCM-100H型催化剂成功开发高熔体流动速率高刚性抗冲共聚聚丙烯KH39M。讨论了KH39M生产的技术路线、操作条件、产品指标控制和试生产情况,对KH39M的力学性能、共聚单体含量、粉料粒径等进行了分析。结果表明:首...在Horizone工艺装置使用BCM-100H型催化剂成功开发高熔体流动速率高刚性抗冲共聚聚丙烯KH39M。讨论了KH39M生产的技术路线、操作条件、产品指标控制和试生产情况,对KH39M的力学性能、共聚单体含量、粉料粒径等进行了分析。结果表明:首次生产的KH39M弯曲模量达1 590 MPa,简支梁缺口冲击强度达7.6 k J/m^2,下游用户测试结果表明,KH39M性能与进口同类产品相当。展开更多
基金Supported by the National Natural Science Foundation of China(21236001,21476058,21506046)
文摘The catalytic performance of co mmonly used heteropolyacids (H3PW12O40, H4SiW12O40 and H3PMO12O40 synthesis of 4,4'-methylenedianiline (4,4'-MDA) from aniline and formaldehyde was evaluated and the result showed that H4SiW12O40 with moderate acid strength exhibited the best catalytic performance. Then HaSiW12O40@MIL-100(Fe) was prepared by encapsulating H4SiW12O40 within the pores of MIL-100(Fe) to facilitate its recovery and reuse. The prepared H4SiW12O40@MIL-100(Fe) was characterized by means of FT-IR, N2 adsorption-desorption, XRD, TG and then the catalytic performance was evaluated. The result showed that H4SiW12O40 was highly dispersed in the pores of MIL-100(Fe), and both the Keggin structure of HaSiW12O40 and the crystal skeleton structure of MIL-100(Fe) could be effectively/preserved. Furthermore, H4SiW12O40@ MIL-100(Fe) showed excellent catalytic performance under the following reaction conditions: a molar ratio of aniline to formaldehyde = 5, a mass ratio of catalyst to formaldehyde = 1.2, a reaction temperature of 120 ℃ and a reaction time of 6 h. Under the above reaction conditions, the conversion of aniline was 41.1%, and the yield and selectivity of 4,4'-MDA were 81,6% and 79.2%, respectively. Unfortunately, an appreciable loss in the catalytic activity of the recovered H4SiW12O40@MIL-100(Fe) was observed because of the blocking of the pores and the change of the acidity resulted from the adsorption of alkaline organics such as aniline and 4,4'-MDA. The adsorbed alkaline organics could be cleaned up when the recovered catalyst was washed by methanol and DMF. Then the catalyst was effectively reused up to three cycles without much loss in its activity.
文摘在Horizone工艺装置使用BCM-100H型催化剂成功开发高熔体流动速率高刚性抗冲共聚聚丙烯KH39M。讨论了KH39M生产的技术路线、操作条件、产品指标控制和试生产情况,对KH39M的力学性能、共聚单体含量、粉料粒径等进行了分析。结果表明:首次生产的KH39M弯曲模量达1 590 MPa,简支梁缺口冲击强度达7.6 k J/m^2,下游用户测试结果表明,KH39M性能与进口同类产品相当。