The intrinsic conduction mechanism and optimal sintering atmosphere of(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)(BCZT)ceramics were regulated by Mn-doping element in this work.By Hall and impedance analysis,the undop...The intrinsic conduction mechanism and optimal sintering atmosphere of(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)(BCZT)ceramics were regulated by Mn-doping element in this work.By Hall and impedance analysis,the undoped BCZT ceramics exhibit a typical n-type conduction mechanism,and the electron concentration decreases with the increasing oxygen partial pressure.Therefore,the undoped ceramics exhibit best electrical properties(piezoelectrical constant<733=585 pC·N^(-1),electro-mechanical coupling factor k_(p)=56%)in O_(2).A handful of Mn-doping element would transfer the conduction mechanism from n-type into p-type.And the hole concentration reduces with the decreasing oxygen partial pressure for Mn-doped BCZT ceramics.Therefore,the Mn-doped ceramics sintered in N_(2)have the highest insulation resistance and best piezoelectric properties(d_(33)=505 pC·N^(-1),k_(p)=50%).The experimental results demonstrate that the Mn-doping element can effectively adjust the intrinsic conduction mechanism and then predict the optimal atmosphere.展开更多
In this work,a traditional solid-state method was adopted to prepare dense Ba_(0.85)Ca_(0.15)[(Zr_(0.1)Ti_(0.9))_(1-x)–(Nb_(0.5)La_(0.5))_(x)]O_(3)(BCZT–xNL)lead-free relaxation ferroelectrics with excellent energy ...In this work,a traditional solid-state method was adopted to prepare dense Ba_(0.85)Ca_(0.15)[(Zr_(0.1)Ti_(0.9))_(1-x)–(Nb_(0.5)La_(0.5))_(x)]O_(3)(BCZT–xNL)lead-free relaxation ferroelectrics with excellent energy storage performance(ESP).Remarkably,a large breakdown field strength of BDS(-410 kV/cm)resulting from decreased grain size by double ions doping at the B-site was achieved in BCZT–xNL ceramics.Especially,the BCZT–0.12NL ceramic displays a good recoverable energy density(W_(rec))of 3.1 J/cm^(3),a high efficiency of 86.7%(η)and a superior fatigue resistance,as well as a superior charge–discharge performance(C_(D)-1623.14 A/cm^(2),P_(D)-162.31 MW/cm^(3),W_(D)-1.30 J/cm^(3),t_(0.9)-49.6 ns)and good thermal stability.Besides,upon NL doping,the FE to RFE phase transition results in a dielectric behavior traversing the relaxation phase(γ-1.84)accompanied by frequency dispersion,which is beneficial to improve ESP.The superior ESP in this work indicates that BCZT–0.12NL ceramics are a promising candidate used in energy storage capacitors.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52072150 and 51972146)the Young Elite Scientists Sponsorship Program by CAST,the State Key Laboratory of New Ceramics and Fine Processing Tsinghua University(Grant No.KF202002)the Open Foundation of Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices(Grant No.EFMD2021002Z).
文摘The intrinsic conduction mechanism and optimal sintering atmosphere of(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)(BCZT)ceramics were regulated by Mn-doping element in this work.By Hall and impedance analysis,the undoped BCZT ceramics exhibit a typical n-type conduction mechanism,and the electron concentration decreases with the increasing oxygen partial pressure.Therefore,the undoped ceramics exhibit best electrical properties(piezoelectrical constant<733=585 pC·N^(-1),electro-mechanical coupling factor k_(p)=56%)in O_(2).A handful of Mn-doping element would transfer the conduction mechanism from n-type into p-type.And the hole concentration reduces with the decreasing oxygen partial pressure for Mn-doped BCZT ceramics.Therefore,the Mn-doped ceramics sintered in N_(2)have the highest insulation resistance and best piezoelectric properties(d_(33)=505 pC·N^(-1),k_(p)=50%).The experimental results demonstrate that the Mn-doping element can effectively adjust the intrinsic conduction mechanism and then predict the optimal atmosphere.
基金supported by the National Science Foundation of China(NSFC)(Grant Nos.52272119 and 52202143)The authors would also like to thank the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2022JQ338)+3 种基金Young Talent Fund of University Association for Science and Technology in Shaanxi,China(20230415)the Fundamental Research Funds for the Central Universities(Grant No.GK202401009)Key Research and Development Program of Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-162)the Fundamental Innovation Project in School of Materials Science and Engineering(SNNU).
文摘In this work,a traditional solid-state method was adopted to prepare dense Ba_(0.85)Ca_(0.15)[(Zr_(0.1)Ti_(0.9))_(1-x)–(Nb_(0.5)La_(0.5))_(x)]O_(3)(BCZT–xNL)lead-free relaxation ferroelectrics with excellent energy storage performance(ESP).Remarkably,a large breakdown field strength of BDS(-410 kV/cm)resulting from decreased grain size by double ions doping at the B-site was achieved in BCZT–xNL ceramics.Especially,the BCZT–0.12NL ceramic displays a good recoverable energy density(W_(rec))of 3.1 J/cm^(3),a high efficiency of 86.7%(η)and a superior fatigue resistance,as well as a superior charge–discharge performance(C_(D)-1623.14 A/cm^(2),P_(D)-162.31 MW/cm^(3),W_(D)-1.30 J/cm^(3),t_(0.9)-49.6 ns)and good thermal stability.Besides,upon NL doping,the FE to RFE phase transition results in a dielectric behavior traversing the relaxation phase(γ-1.84)accompanied by frequency dispersion,which is beneficial to improve ESP.The superior ESP in this work indicates that BCZT–0.12NL ceramics are a promising candidate used in energy storage capacitors.