Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be...Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.展开更多
The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the...The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.展开更多
When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the feature...When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.展开更多
The LM-3A series launch vehicle was used for all launch missions for the BeiDou Navigation Satellite System(BDS)project,including BDS-1,BDS-2,and BDS-3.So it is known as Space Express for BDS.During the 26 years’deve...The LM-3A series launch vehicle was used for all launch missions for the BeiDou Navigation Satellite System(BDS)project,including BDS-1,BDS-2,and BDS-3.So it is known as Space Express for BDS.During the 26 years’development period for the BDS project,a series of key technological breakthroughs with the LM-3 A series of launch vehicles were made,improving the launch capability of different payloads into GTO,IGTO and MTO,from sending one satellites into transfer orbit to sending two satellites into transfer orbit,to sending two satellites into target orbit directly.A total of 59 satellites in 44 launches were launched using the LM-3 A series launch vehicle for the BDS project,achieving 100%success.展开更多
In recent years,geological and mineral resources exploration in China has expanded to deep hinterland of the Qinghai−Tibet Plateau and other regions with complex geological conditions.The special natural conditions of...In recent years,geological and mineral resources exploration in China has expanded to deep hinterland of the Qinghai−Tibet Plateau and other regions with complex geological conditions.The special natural conditions of Qinghai−Tibet Plateau determine the characteristics of“life-forbidden zone”that is characterized by alpine hypoxia,changeable weather,complex road conditions,and beast attack.In particular,the work in wild depopulated zones with severe environment and poor communications imposes serious threats to the life safety of geological personnel.Therefore,how to guarantee the safety of geological personnel working on the Qinghai−Tibet Plateau and how to reduce or even avoid casualty of geological personnel have currently become the urgent challenge.In this study,an emergency rescue information system for field geological survey is constructed based on BeiDou Navigation Satellite System.A case study of emergency rescue has been conducted in the depopulated zone of the Qinghai−Tibet Plateau and good effects have been achieved,providing security assurance for personnel engaged in field geological survey on the Qinghai−Tibet Plateau and technical support for the emergency rescue in case of natural hazards on the Qinghai−Tibet Plateau.The BeiDou Navigation Satellite System(BDS)can be effectively used to locate and communicate in the emergency rescue for rigorous Geological survey task where there is no network signal for the mobile phone,and the emergency rescue guarantee system is independent,reliable,and relatively cheap.The application value of BDS is demonstrated in the geological field.展开更多
Non-line-of-sight(NLOS)multipath effect is the main factor that restricts the application of global navigation satellite system(GNSS)in complex environments,especially in urban canyon.The effective avoidance of NLOS s...Non-line-of-sight(NLOS)multipath effect is the main factor that restricts the application of global navigation satellite system(GNSS)in complex environments,especially in urban canyon.The effective avoidance of NLOS signals can significantly improve the positioning performance of GNSS receiver.In this paper,an NLOS/LOS classification model based on recurrent neural network is proposed to classify satellite signals received in urban canyon environments.The accuracy of classification is 91%,and the recognition rate of NLOS is 89%;the classification performance is better than that of traditional machine learning classification models such as support vector machine.For BeiDou navigation satellite system/global positioning system(BDS/GPS)fusion system,the least square algorithm and extended Kalman filter are used to estimate the position.The experimental results show that the three-dimensional positioning accuracy after NLOS recognition is improved about 60%on average compared with the traditional methods,and the positioning stability is also improved significantly.展开更多
A common practice adopted for the pseudorange bias estimation and calibration assumes that Global Navigation Satellite System satellite-dependent pseudorange biases vary gently over time.Whereupon satellite pseudorang...A common practice adopted for the pseudorange bias estimation and calibration assumes that Global Navigation Satellite System satellite-dependent pseudorange biases vary gently over time.Whereupon satellite pseudorange biases are routinely estimated and provided as the products with low temporal resolution,e.g.,hourly or daily,by the agencies.The story sounds unquestionably perfect under the acquainted assumption.To validate the inadequacy of the above hypothesis we herein present an approach to the estimate the BeiDou Navigation Satellite System(BDS)pseudorange biases with high temporal resolution.Its feasibility,affecting factors,and necessity are discussed.Concretely,the Geometry-Free function models are first constructed to retrieve the linear combination of the pseudorange biases;then the pseudorange Observable-specific Signal Bias(OSB)values with respect to baseline frequencies(e.g.,BDS C2I/C6I)are estimated along with the ionosphere modeling;subsequently,all multi-frequency pseudorange OSBs are determined by using the ionospheric information with constraint conditions;finally,the possible Differential Code Bias sets are attainable with the estimated pseudorange OSBs.Using the observation data of four months when the estimated BDS pseudorange biases are stable,their reliability is demonstrated with the stability at the level of sub-nanosecond and the BeiDou-3 Navigation Satellite System(BDS-3)values more stable than that of BeiDou-2 Navigation Satellite System(BDS-2).The comparison between the estimated pseudorange biases and the Chinese Academy of Sciences products reveals that the accuracy of the estimated pseudorange biases is 0.2–0.4 ns.Moreover,the large magnitude of the short-term pseudorange bias variation in the tens of nanoseconds for the BDS-2 and BDS-3 are found in years 2021 and 2022,which are affected by two types of the satellite flex power for the BDS-2 and BDS-3,respectively.We stress that it’s necessary to estimate the BDS pseudorange biases with high temporal resolution in the case of the satellite flex power and the products currently provided by the agencies cannot reflect the true quantity under the circumstance.展开更多
An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) s...An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) suffers the problem for which the uncertainty of the statistical properties to dynamic and measurement models will degrade the performance.In this research, an Adaptive Interacting Multiple Model(AIMM) filter is developed to enhance performance. The soft-switching property of Interacting Multiple Model(IMM) algorithm allows the adaptation between two levels of process noise, namely lower and upper bounds of the process noise. In particular, the Sage adaptive filtering is applied to adapt the measurement covariance on line. In addition, a classified measurement update strategy is utilized, which updates the pseudorange and Doppler observations sequentially. A field experiment was conducted to validate the proposed algorithm, the pseudorange and Doppler observations from Global Positioning System(GPS) and Bei Dou Navigation Satellite System(BDS) were post-processed in differential mode.The results indicate that decimeter-level positioning accuracy is achievable with AIMM for GPS/INS and GPS/BDS/INS configurations, and the position accuracy is improved by 35.8%, 34.3% and 33.9% for north, east and height components, respectively, compared to the CEKF counterpartfor GPS/BDS/INS. Degraded performance for BDS/INS is obtained due to the lower precision of BDS pseudorange observations.展开更多
The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chi...The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chinese Bei Dou Navigation Satellite System(BDS).The long-term perturbation model for the relative motion is developed based on the Hamiltonian model,and the long-term evolution law is analyzed.The relationship between the control boundary of the constellation and the offset of the orbital elements is analyzed,and a general analytical method for calculating the offset of the orbit elements is proposed.The analytical model is further improved when the luni-solar perturbations are included.The long-term evolutions of the BDS MEO constellation within 10 years are illustrated,and the effectiveness of the proposed analytical perturbation compensation calculation approach is compared with the traditional numerical results.We found the fundamental reason for the nonlinear variations of the relative longitude of ascending node and the mean argument of latitude is the long-periodic variations of the orbital inclination due to the luni-solar perturbations.The proposed analytical approach can avoid the numerical iterations,and reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,there is no need for maintaining the BDS MEO constellation within 10 years while using the perturbation compensation method.展开更多
The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(...The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(MCC) inquiries to signal transmitted via GEO satellite transponder.The positioning result can be calculated with elevation constraint by MCC.The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay,atmospheric trans-mission delay and GEO satellite position error.During GEO orbit maneuver,poor orbit forecast accuracy significantly impacts RDSS services.A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error.Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver,independent from the RDSS reference station.This improvement can reach 50% in maximum.Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.展开更多
This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase...This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase III with 35 satellites) and GPS(with 31 satellites) for the first time. The three constellations are simulated and their RAIM performances are quantified by the global, Asia-Pacific region and temporal variations respectively. RAIM availability must be determined before RAIM detection. It is proposed that RAIM availability performances from satellites and constellation geometry configuration are evaluated by the number of visible satellites(NVS, NVS > 5) and geometric dilution of precision(GDOP, GDOP < 6) together. The minimal detectable bias(MDB) and minimal detectable effect(MDE) are considered as a measure of the minimum FD capability of RAIM in the measurement level and navigation position level respectively. The analyses of simulation results testify that the average global RAIM performances for BeiDou are better than that for GPS except global RAIM holes proportion. Moreover, the Asia-Pacific RAIM performances for BeiDou are much better than that for GPS in all indexes. RAIM availability from constellation geometry configuration and RAIM minimum FD capability for BeiDou14 are better than that for GPS in Asia-Pacific region in all cases, but the BeiDou14 RAIM availability from satellites are worse than GPS's. The methods and conclusions can be used for RAIM prediction and real-time assessment of all kinds of Global Navigation Satellite Systems(GNSS) constellation.展开更多
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
基金supported by the National Natural Science Foundation of China(61773120)the National Natural Science Fund for Distinguished Young Scholars of China(61525304)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Hunan Postgraduate Research Innovation Project(CX2018B022)the China Scholarship Council-Leiden University Scholarship。
文摘Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.
基金supported by“The National Key Research and Development Program of China(No.2020YFA0713502)”“The National Natural Science Foundation of China(No.41874039)”+1 种基金“Jiangsu National Science Foundation(No.BK20191342)”“Fundamental Research Funds for the Central Universities(No.2019ZDPY-RH03)”。
文摘The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.
基金National Natural Science Foundation of China(Nos.61662070,61363059)Youth Science Fund Project of Lanzhou Jiaotong University(No.2018036)。
文摘When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.
文摘The LM-3A series launch vehicle was used for all launch missions for the BeiDou Navigation Satellite System(BDS)project,including BDS-1,BDS-2,and BDS-3.So it is known as Space Express for BDS.During the 26 years’development period for the BDS project,a series of key technological breakthroughs with the LM-3 A series of launch vehicles were made,improving the launch capability of different payloads into GTO,IGTO and MTO,from sending one satellites into transfer orbit to sending two satellites into transfer orbit,to sending two satellites into target orbit directly.A total of 59 satellites in 44 launches were launched using the LM-3 A series launch vehicle for the BDS project,achieving 100%success.
基金This study was supported by the Public Beneficial Industrial Funds by the Ministry of Land and Resources of China[grant number 201011010].
文摘In recent years,geological and mineral resources exploration in China has expanded to deep hinterland of the Qinghai−Tibet Plateau and other regions with complex geological conditions.The special natural conditions of Qinghai−Tibet Plateau determine the characteristics of“life-forbidden zone”that is characterized by alpine hypoxia,changeable weather,complex road conditions,and beast attack.In particular,the work in wild depopulated zones with severe environment and poor communications imposes serious threats to the life safety of geological personnel.Therefore,how to guarantee the safety of geological personnel working on the Qinghai−Tibet Plateau and how to reduce or even avoid casualty of geological personnel have currently become the urgent challenge.In this study,an emergency rescue information system for field geological survey is constructed based on BeiDou Navigation Satellite System.A case study of emergency rescue has been conducted in the depopulated zone of the Qinghai−Tibet Plateau and good effects have been achieved,providing security assurance for personnel engaged in field geological survey on the Qinghai−Tibet Plateau and technical support for the emergency rescue in case of natural hazards on the Qinghai−Tibet Plateau.The BeiDou Navigation Satellite System(BDS)can be effectively used to locate and communicate in the emergency rescue for rigorous Geological survey task where there is no network signal for the mobile phone,and the emergency rescue guarantee system is independent,reliable,and relatively cheap.The application value of BDS is demonstrated in the geological field.
文摘Non-line-of-sight(NLOS)multipath effect is the main factor that restricts the application of global navigation satellite system(GNSS)in complex environments,especially in urban canyon.The effective avoidance of NLOS signals can significantly improve the positioning performance of GNSS receiver.In this paper,an NLOS/LOS classification model based on recurrent neural network is proposed to classify satellite signals received in urban canyon environments.The accuracy of classification is 91%,and the recognition rate of NLOS is 89%;the classification performance is better than that of traditional machine learning classification models such as support vector machine.For BeiDou navigation satellite system/global positioning system(BDS/GPS)fusion system,the least square algorithm and extended Kalman filter are used to estimate the position.The experimental results show that the three-dimensional positioning accuracy after NLOS recognition is improved about 60%on average compared with the traditional methods,and the positioning stability is also improved significantly.
文摘A common practice adopted for the pseudorange bias estimation and calibration assumes that Global Navigation Satellite System satellite-dependent pseudorange biases vary gently over time.Whereupon satellite pseudorange biases are routinely estimated and provided as the products with low temporal resolution,e.g.,hourly or daily,by the agencies.The story sounds unquestionably perfect under the acquainted assumption.To validate the inadequacy of the above hypothesis we herein present an approach to the estimate the BeiDou Navigation Satellite System(BDS)pseudorange biases with high temporal resolution.Its feasibility,affecting factors,and necessity are discussed.Concretely,the Geometry-Free function models are first constructed to retrieve the linear combination of the pseudorange biases;then the pseudorange Observable-specific Signal Bias(OSB)values with respect to baseline frequencies(e.g.,BDS C2I/C6I)are estimated along with the ionosphere modeling;subsequently,all multi-frequency pseudorange OSBs are determined by using the ionospheric information with constraint conditions;finally,the possible Differential Code Bias sets are attainable with the estimated pseudorange OSBs.Using the observation data of four months when the estimated BDS pseudorange biases are stable,their reliability is demonstrated with the stability at the level of sub-nanosecond and the BeiDou-3 Navigation Satellite System(BDS-3)values more stable than that of BeiDou-2 Navigation Satellite System(BDS-2).The comparison between the estimated pseudorange biases and the Chinese Academy of Sciences products reveals that the accuracy of the estimated pseudorange biases is 0.2–0.4 ns.Moreover,the large magnitude of the short-term pseudorange bias variation in the tens of nanoseconds for the BDS-2 and BDS-3 are found in years 2021 and 2022,which are affected by two types of the satellite flex power for the BDS-2 and BDS-3,respectively.We stress that it’s necessary to estimate the BDS pseudorange biases with high temporal resolution in the case of the satellite flex power and the products currently provided by the agencies cannot reflect the true quantity under the circumstance.
基金co-supported by the National Key Research and Development Program of China(No.2016YFC0803103)Beijing Advanced Innovation Center for Future Urban Design(No.UDC2016050100)Beijing Postdoctoral Research Foundation
文摘An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) suffers the problem for which the uncertainty of the statistical properties to dynamic and measurement models will degrade the performance.In this research, an Adaptive Interacting Multiple Model(AIMM) filter is developed to enhance performance. The soft-switching property of Interacting Multiple Model(IMM) algorithm allows the adaptation between two levels of process noise, namely lower and upper bounds of the process noise. In particular, the Sage adaptive filtering is applied to adapt the measurement covariance on line. In addition, a classified measurement update strategy is utilized, which updates the pseudorange and Doppler observations sequentially. A field experiment was conducted to validate the proposed algorithm, the pseudorange and Doppler observations from Global Positioning System(GPS) and Bei Dou Navigation Satellite System(BDS) were post-processed in differential mode.The results indicate that decimeter-level positioning accuracy is achievable with AIMM for GPS/INS and GPS/BDS/INS configurations, and the position accuracy is improved by 35.8%, 34.3% and 33.9% for north, east and height components, respectively, compared to the CEKF counterpartfor GPS/BDS/INS. Degraded performance for BDS/INS is obtained due to the lower precision of BDS pseudorange observations.
基金supported by the National Natural Science Foundation of China (No. 61403416)
文摘The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chinese Bei Dou Navigation Satellite System(BDS).The long-term perturbation model for the relative motion is developed based on the Hamiltonian model,and the long-term evolution law is analyzed.The relationship between the control boundary of the constellation and the offset of the orbital elements is analyzed,and a general analytical method for calculating the offset of the orbit elements is proposed.The analytical model is further improved when the luni-solar perturbations are included.The long-term evolutions of the BDS MEO constellation within 10 years are illustrated,and the effectiveness of the proposed analytical perturbation compensation calculation approach is compared with the traditional numerical results.We found the fundamental reason for the nonlinear variations of the relative longitude of ascending node and the mean argument of latitude is the long-periodic variations of the orbital inclination due to the luni-solar perturbations.The proposed analytical approach can avoid the numerical iterations,and reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,there is no need for maintaining the BDS MEO constellation within 10 years while using the perturbation compensation method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11033004 and 11203009)the Shanghai Committee of Science and Technology,China(Grant No.11ZR1443500)the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.12DZ2273300)
文摘The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(MCC) inquiries to signal transmitted via GEO satellite transponder.The positioning result can be calculated with elevation constraint by MCC.The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay,atmospheric trans-mission delay and GEO satellite position error.During GEO orbit maneuver,poor orbit forecast accuracy significantly impacts RDSS services.A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error.Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver,independent from the RDSS reference station.This improvement can reach 50% in maximum.Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.
基金the National High Technology Research and Development Program(863)of China(No.2011AA120503)
文摘This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase III with 35 satellites) and GPS(with 31 satellites) for the first time. The three constellations are simulated and their RAIM performances are quantified by the global, Asia-Pacific region and temporal variations respectively. RAIM availability must be determined before RAIM detection. It is proposed that RAIM availability performances from satellites and constellation geometry configuration are evaluated by the number of visible satellites(NVS, NVS > 5) and geometric dilution of precision(GDOP, GDOP < 6) together. The minimal detectable bias(MDB) and minimal detectable effect(MDE) are considered as a measure of the minimum FD capability of RAIM in the measurement level and navigation position level respectively. The analyses of simulation results testify that the average global RAIM performances for BeiDou are better than that for GPS except global RAIM holes proportion. Moreover, the Asia-Pacific RAIM performances for BeiDou are much better than that for GPS in all indexes. RAIM availability from constellation geometry configuration and RAIM minimum FD capability for BeiDou14 are better than that for GPS in Asia-Pacific region in all cases, but the BeiDou14 RAIM availability from satellites are worse than GPS's. The methods and conclusions can be used for RAIM prediction and real-time assessment of all kinds of Global Navigation Satellite Systems(GNSS) constellation.