In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,th...In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,the stability and convergence analysis are well established in[Liao and Zhang,Math.Comp.,90(2021),1207–1226]and[Chen,Yu,and Zhang,arXiv:2108.02910,2021].However,the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial due to the additional degrees of freedom and the non-positivity of DOC kernels.By developing a novel spectral norm inequality,the unconditional stability and convergence are rigorously proved under the updated step ratio restriction rk:=τk/τk−1≤1.405 for BDF3 method.Finally,numerical experiments are performed to illustrate the theoretical results.To the best of our knowledge,this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.展开更多
Studies the different types of multistep discretization of index 3 differential-algebraic equations in Hessenberg form. Existense, uniqueness and influence of perturbations; Local convergence of multistep discretizati...Studies the different types of multistep discretization of index 3 differential-algebraic equations in Hessenberg form. Existense, uniqueness and influence of perturbations; Local convergence of multistep discretization; Details on the numerical tests.展开更多
基金supported by the Science Fund for Distinguished Young Scholars of Gansu Province(Grant No.23JRRA1020)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-06).
文摘In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,the stability and convergence analysis are well established in[Liao and Zhang,Math.Comp.,90(2021),1207–1226]and[Chen,Yu,and Zhang,arXiv:2108.02910,2021].However,the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial due to the additional degrees of freedom and the non-positivity of DOC kernels.By developing a novel spectral norm inequality,the unconditional stability and convergence are rigorously proved under the updated step ratio restriction rk:=τk/τk−1≤1.405 for BDF3 method.Finally,numerical experiments are performed to illustrate the theoretical results.To the best of our knowledge,this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.
文摘Studies the different types of multistep discretization of index 3 differential-algebraic equations in Hessenberg form. Existense, uniqueness and influence of perturbations; Local convergence of multistep discretization; Details on the numerical tests.