针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳...针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量q的超逼近结果.最后利用一个算例验证理论结果的正确性.展开更多
In this paper,a BDF2 modular grad-div algorithm for the Stokes/Darcy model is constructed.This method not only effectively avoids solver breakdown,but also increases computational efficiency for increasing parameter v...In this paper,a BDF2 modular grad-div algorithm for the Stokes/Darcy model is constructed.This method not only effectively avoids solver breakdown,but also increases computational efficiency for increasing parameter values.Herein,complete stability and error analysis are provided.Finally,some numerical tests are proposed to justify the theoretical analysis.展开更多
In this note we announce the sharp error estimate of BDF2 scheme for linear diffusion reaction problem with variable time steps.Our analysis shows that the optimal second-order convergence does not require the high-or...In this note we announce the sharp error estimate of BDF2 scheme for linear diffusion reaction problem with variable time steps.Our analysis shows that the optimal second-order convergence does not require the high-order methods or the very small time stepsτ1=O(τ2)for the first level solution u1.This is,the first-order consistence of the first level solution u1 like BDF1(i.e.Euler scheme)as a starting point does not cause the loss of global temporal accuracy,and the ratios are updated to rk≤4.8645.展开更多
In this work,we are concerned with the stability and convergence analysis of the second-order backward difference formula(BDF2)with variable steps for the molecular beam epitaxial model without slope selection.We firs...In this work,we are concerned with the stability and convergence analysis of the second-order backward difference formula(BDF2)with variable steps for the molecular beam epitaxial model without slope selection.We first show that the variable-step BDF2 scheme is convex and uniquely solvable under a weak time-step constraint.Then we show that it preserves an energy dissipation law if the adjacent time-step ratios satisfy r_(k):=τ_(k)/τ_(k-1)<3.561.Moreover,with a novel discrete orthogonal convolution kernels argument and some new estimates on the corresponding positive definite quadratic forms,the L^(2)norm stability and rigorous error estimates are established,under the same step-ratio constraint that ensures the energy stability,i.e.,0<r_(k)<3.561.This is known to be the best result in the literature.We finally adopt an adaptive time-stepping strategy to accelerate the computations of the steady state solution and confirm our theoretical findings by numerical examples.展开更多
文摘针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量q的超逼近结果.最后利用一个算例验证理论结果的正确性.
基金Supported by NSFC(12171376,2020-JCJQ-ZD-029)Natural Science Foundation of Hubei Province(2019CFA007)the Fundamental Research Funds for the Central Universities(2042021kf0050)。
基金Supported by the Provincial Natural Science Foundation of Shanxi(201901D111123)Key Research and Development(R&D)Projects of Shanxi Province(201903D121038).
文摘In this paper,a BDF2 modular grad-div algorithm for the Stokes/Darcy model is constructed.This method not only effectively avoids solver breakdown,but also increases computational efficiency for increasing parameter values.Herein,complete stability and error analysis are provided.Finally,some numerical tests are proposed to justify the theoretical analysis.
基金Natural Science Foundation of Hubei Province(2019CFA007)Supported by NSFC(11771035).
文摘In this note we announce the sharp error estimate of BDF2 scheme for linear diffusion reaction problem with variable time steps.Our analysis shows that the optimal second-order convergence does not require the high-order methods or the very small time stepsτ1=O(τ2)for the first level solution u1.This is,the first-order consistence of the first level solution u1 like BDF1(i.e.Euler scheme)as a starting point does not cause the loss of global temporal accuracy,and the ratios are updated to rk≤4.8645.
基金supported by National Natural Science Foundation of China(Grant No.12071216)supported by National Natural Science Foundation of China(Grant No.11731006)+2 种基金the NNW2018-ZT4A06 projectsupported by National Natural Science Foundation of China(Grant Nos.11822111,11688101 and 11731006)the Science Challenge Project(Grant No.TZ2018001)。
文摘In this work,we are concerned with the stability and convergence analysis of the second-order backward difference formula(BDF2)with variable steps for the molecular beam epitaxial model without slope selection.We first show that the variable-step BDF2 scheme is convex and uniquely solvable under a weak time-step constraint.Then we show that it preserves an energy dissipation law if the adjacent time-step ratios satisfy r_(k):=τ_(k)/τ_(k-1)<3.561.Moreover,with a novel discrete orthogonal convolution kernels argument and some new estimates on the corresponding positive definite quadratic forms,the L^(2)norm stability and rigorous error estimates are established,under the same step-ratio constraint that ensures the energy stability,i.e.,0<r_(k)<3.561.This is known to be the best result in the literature.We finally adopt an adaptive time-stepping strategy to accelerate the computations of the steady state solution and confirm our theoretical findings by numerical examples.