Nanoparticle transport and deposition in bends with circular cross-section are solved for different Reynolds numbers and Schmidt numbers. The perturbation method is used in solving the equations. The results show that...Nanoparticle transport and deposition in bends with circular cross-section are solved for different Reynolds numbers and Schmidt numbers. The perturbation method is used in solving the equations. The results show that the particle transport patterns are similar and independent of the particle size and other parameters when suspended nanoparticles flow in a straight tube. At the outside edge, particle deposition is the most intensive, while deposition at the inside edge is the weakest. In the upper and lower parts of the tube, depositions are approximately the same for different Schmidt numbers. Curvatures of tube, Reynolds number, and Schmidt number have second-order, forth-order, and first-order effects on the relative deposition efficiency, respectively.展开更多
Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,base...Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,based on the flow field from numerical simulation.A fully developed flow pattern in the present simulation is compared with previous numerical results for validating the model and computational code.It is found that for the simulated particulate flow system,the particle mass concentration,number concentration,particle polydispersity, mean particle diameter and geometric standard deviation over cross-section increase with time.The distribution of particle mass concentration at different time is independent of the initial particle size.More particles are concen-trated at outer edge of the bend.Coagulation plays more important role at initial stage than that in the subsequent period.The increase of Reynolds number and initial particle size leads to the increase of particle number concentration.The particle polydispersity,mean particle diameter and geometric standard deviation increase with decreasing Reynolds number and initial particle size.展开更多
The present paper intends to introduce a new method for reducingbends erosion from particles impacts: the ribbed bend erosionprotection method. Ribs are evenly fixed in the range of 20 deg-80deg on the inner-wall of i...The present paper intends to introduce a new method for reducingbends erosion from particles impacts: the ribbed bend erosionprotection method. Ribs are evenly fixed in the range of 20 deg-80deg on the inner-wall of inside 90 deg bend and the bend (includingribs) is made of medium carbon steel. Three-dimensional numericalworks is performed and the result shows satisfactory agreement withthe experimental measurement. Numerical simulation studies thecharacteristics of axial gas flow along the bend and secondary flowat cross section.展开更多
The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the re...The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the reach. In order to take the circulation currents in the bends into account, the momentum equations were improved by adding an additional source term. Comparison of the numerical simulation with field measurements indicates that the improved two-dimensional depth-averaged RNG k-e model can improve the accuracy of the numerical simulation. A rapid adaptive algorithm was constructed, which can automatically adjust Manning's roughness coefficient in different parts of the study river reach. As a result, not only can the trial computation time be significantly shortened, but the accuracy of the numerical simulation can also be greatly improved. Comparison of the simulated and measured water surface slopes for four typical cases shows that the longitudinal and transverse slopes of the water surface increase with the average velocity upstream. In addition, comparison was made between the positions of the talweg and the main streamline, which coincide for most of the study river reach. However, deviations between the positions of the talweg and the main streamline were found at the junction of two bends, at the position where the river width suddenly decreases or increases.展开更多
In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since...In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.展开更多
A model for incipient movement of sediment in rolling pattern was established. In this model, the starting of sediment particles under low transport rate, the exposure degree of sediment, the lateral slope of water su...A model for incipient movement of sediment in rolling pattern was established. In this model, the starting of sediment particles under low transport rate, the exposure degree of sediment, the lateral slope of water surface and the effect of transverse circulating current induced by the hydraulic structure of bend flow were fully considered. A theoretical formula for the incipient velocity of non-cohesive and non-uniform sediment in sloping river bends was developed. The results from the theoretical formula compared well with the experimental data.展开更多
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau...Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.展开更多
Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their spe...Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their speed according to the gradient.This study aimed to quantify tibial bending moments and stress at the anterior and posterior peripheries when running at different speeds on surfaces of different gradients.Methods:Twenty recreational runners ran on a treadmill at 3 different speeds(2.5 m/s,3.0 m/s,and 3.5 m/s)and gradients(level:0%;uphill:+5%,+10%,and+15%;downhill:-5%,-10%,and-15%).Force and marker data were collected synchronously throughout.Bending moments were estimated at the distal third centroid of the tibia about the medial-lateral axis by ensuring static equilibrium at each 1%of stance.Stress was derived from bending moments at the anterior and posterior peripheries by modeling the tibia as a hollow ellipse.Two-way repeated-measures analysis of variance were conducted using both functional and discrete statistical analyses.Results:There were significant main effects for running speed and gradient on peak bending moments and peak anterior and posterior stress.Higher running speeds resulted in greater tibial loading.Running uphill at+10%and+15%resulted in greater tibial loading than level running.Running downhill at-10%and-15%resulted in reduced tibial loading compared to level running.There was no difference between+5%or-5%and level running.Conclusion:Running at faster speeds and uphill on gradients≥+10%increased internal tibial loading,whereas slower running and downhill running on gradients≥-10%reduced internal loading.Adapting running speed according to the gradient could be a protective mechanism,providing runners with a strategy to minimize the risk of tibial stress injuries.展开更多
An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distribution...An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distributions of flow velocities and suspended sediment concentrations along water depth, it significantly enhanced the applicability of 2D models in simulating open channel flows, especially in channel bends. Preliminary numerical experiments in a U-shaped and a sine-generated experimental channel indicate that the proposed method performs quite well in predicting the change of bed-deformation in channel bends due to suspended sediment transport. This method provides an effective alternative for the simulations of channel morphodynamic changes.展开更多
In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property ...In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous.展开更多
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression...A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.展开更多
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext...This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.展开更多
For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,th...For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel.展开更多
A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism w...A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm.展开更多
In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ...In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.展开更多
The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millise...The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millisecond-scale quick-scanning X-ray absorption fine structures.It is equipped with a cylindrical collimating mirror,a double-crystal monochromator comprising Si(111)and Si(311),a channel-cut quick-scanning Si(111)monochromator,a toroidal focusing mirror,and a high harmonics rejection mirror.It can provide 5-30 keV of X-rays with a photon flux of~5×10^(11)photons/s and an energy resolution of~1.31×10^(-4)at 10 keV.The performance of the beamline can satisfy the demands of users in the fields of catalysis,materials,and environmental science.This paper presents an overview of the beamline design and a detailed description of its performance and capabilities.展开更多
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ...The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.展开更多
基金supported by the National Natural Science Foundation of China (No. 10632070)
文摘Nanoparticle transport and deposition in bends with circular cross-section are solved for different Reynolds numbers and Schmidt numbers. The perturbation method is used in solving the equations. The results show that the particle transport patterns are similar and independent of the particle size and other parameters when suspended nanoparticles flow in a straight tube. At the outside edge, particle deposition is the most intensive, while deposition at the inside edge is the weakest. In the upper and lower parts of the tube, depositions are approximately the same for different Schmidt numbers. Curvatures of tube, Reynolds number, and Schmidt number have second-order, forth-order, and first-order effects on the relative deposition efficiency, respectively.
基金Supported by the Major Program of the National Natural Science Foundation of China(10632070)
文摘Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,based on the flow field from numerical simulation.A fully developed flow pattern in the present simulation is compared with previous numerical results for validating the model and computational code.It is found that for the simulated particulate flow system,the particle mass concentration,number concentration,particle polydispersity, mean particle diameter and geometric standard deviation over cross-section increase with time.The distribution of particle mass concentration at different time is independent of the initial particle size.More particles are concen-trated at outer edge of the bend.Coagulation plays more important role at initial stage than that in the subsequent period.The increase of Reynolds number and initial particle size leads to the increase of particle number concentration.The particle polydispersity,mean particle diameter and geometric standard deviation increase with decreasing Reynolds number and initial particle size.
基金Supported by the National Natural Science Foundation of China (No. 29876034).
文摘The present paper intends to introduce a new method for reducingbends erosion from particles impacts: the ribbed bend erosionprotection method. Ribs are evenly fixed in the range of 20 deg-80deg on the inner-wall of inside 90 deg bend and the bend (includingribs) is made of medium carbon steel. Three-dimensional numericalworks is performed and the result shows satisfactory agreement withthe experimental measurement. Numerical simulation studies thecharacteristics of axial gas flow along the bend and secondary flowat cross section.
基金supported by the National Natural Science Foundation of China(Grants No.11361002 and 91230111)the Natural Science Foundation of Ningxia,China(Grant No.NZ13086)+1 种基金the Project of Beifang University of Nationalities,China(Grant No.2012XZK05)the Foreign Expert Project of Beifang University of Nationalities,China,and the Visiting Scholar Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,China(Grant No.2013A011)
文摘The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the reach. In order to take the circulation currents in the bends into account, the momentum equations were improved by adding an additional source term. Comparison of the numerical simulation with field measurements indicates that the improved two-dimensional depth-averaged RNG k-e model can improve the accuracy of the numerical simulation. A rapid adaptive algorithm was constructed, which can automatically adjust Manning's roughness coefficient in different parts of the study river reach. As a result, not only can the trial computation time be significantly shortened, but the accuracy of the numerical simulation can also be greatly improved. Comparison of the simulated and measured water surface slopes for four typical cases shows that the longitudinal and transverse slopes of the water surface increase with the average velocity upstream. In addition, comparison was made between the positions of the talweg and the main streamline, which coincide for most of the study river reach. However, deviations between the positions of the talweg and the main streamline were found at the junction of two bends, at the position where the river width suddenly decreases or increases.
文摘In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.
基金Supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51021004)the National Natural Science Foundation of China(No.50979066 and No.51009105)the Natural Science Foundation of Tianjin(No.12JCQNJC05600)
文摘A model for incipient movement of sediment in rolling pattern was established. In this model, the starting of sediment particles under low transport rate, the exposure degree of sediment, the lateral slope of water surface and the effect of transverse circulating current induced by the hydraulic structure of bend flow were fully considered. A theoretical formula for the incipient velocity of non-cohesive and non-uniform sediment in sloping river bends was developed. The results from the theoretical formula compared well with the experimental data.
基金Fofinancially supported by the National Natural Science Foundation of China(Grant No.52271288)Peiyang Scholar Initiation Fund from Tianjin University。
文摘Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.
文摘Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their speed according to the gradient.This study aimed to quantify tibial bending moments and stress at the anterior and posterior peripheries when running at different speeds on surfaces of different gradients.Methods:Twenty recreational runners ran on a treadmill at 3 different speeds(2.5 m/s,3.0 m/s,and 3.5 m/s)and gradients(level:0%;uphill:+5%,+10%,and+15%;downhill:-5%,-10%,and-15%).Force and marker data were collected synchronously throughout.Bending moments were estimated at the distal third centroid of the tibia about the medial-lateral axis by ensuring static equilibrium at each 1%of stance.Stress was derived from bending moments at the anterior and posterior peripheries by modeling the tibia as a hollow ellipse.Two-way repeated-measures analysis of variance were conducted using both functional and discrete statistical analyses.Results:There were significant main effects for running speed and gradient on peak bending moments and peak anterior and posterior stress.Higher running speeds resulted in greater tibial loading.Running uphill at+10%and+15%resulted in greater tibial loading than level running.Running downhill at-10%and-15%resulted in reduced tibial loading compared to level running.There was no difference between+5%or-5%and level running.Conclusion:Running at faster speeds and uphill on gradients≥+10%increased internal tibial loading,whereas slower running and downhill running on gradients≥-10%reduced internal loading.Adapting running speed according to the gradient could be a protective mechanism,providing runners with a strategy to minimize the risk of tibial stress injuries.
基金Project support by the National Natural Science Foundation of China (Grant No: 50479034), the Natural Science Foundation of Tianjin (Grant No: 05YFSZSF02100).
文摘An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distributions of flow velocities and suspended sediment concentrations along water depth, it significantly enhanced the applicability of 2D models in simulating open channel flows, especially in channel bends. Preliminary numerical experiments in a U-shaped and a sine-generated experimental channel indicate that the proposed method performs quite well in predicting the change of bed-deformation in channel bends due to suspended sediment transport. This method provides an effective alternative for the simulations of channel morphodynamic changes.
基金Funded by Natural Science Foundation of Guangxi Zhuang Autonomous Region(No.2020JJA160034)the Basic Ability Improvement of Middle and Young Teachers in Guangxi Universities Foundation(No.2020KY21018)。
文摘In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous.
基金financially supported by the National Natural Science Foundation of China(Grant No.52171285)。
文摘A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.
基金supported by the National Research Foundation of Korea(NRFgrant nos.2019R1A2C1085272 and RS-2023-00244478)funded by the Ministry of Science,ICT,and Future Planning(MSIP,South Korea)。
文摘This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.
基金funded by the National Natural Science Foundation of China(Grant No.42201095)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(Grant No.2019QZKK0902)the Postdoctoral Special Funding Project of Sichuan Province(Funding No.TB2023028).
文摘For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel.
基金the financial supports from the National Key Research and Development Program of China (No. 2019YFA0708804)。
文摘A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm.
基金supported by The AMADA FOUNDATION[grant number AF-2022030-B3]JSPS KAKENHI[grant numbers JP16K05961 and JP19K04065]。
文摘In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.
文摘The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millisecond-scale quick-scanning X-ray absorption fine structures.It is equipped with a cylindrical collimating mirror,a double-crystal monochromator comprising Si(111)and Si(311),a channel-cut quick-scanning Si(111)monochromator,a toroidal focusing mirror,and a high harmonics rejection mirror.It can provide 5-30 keV of X-rays with a photon flux of~5×10^(11)photons/s and an energy resolution of~1.31×10^(-4)at 10 keV.The performance of the beamline can satisfy the demands of users in the fields of catalysis,materials,and environmental science.This paper presents an overview of the beamline design and a detailed description of its performance and capabilities.
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
基金the National Natural Science Foundation of China(Grant Number 52075553)the Postgraduate Research and Innovation Project of Central South University(School-Enterprise Association)(Grant Number 2021XQLH014).
文摘The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.