The development of polymer solar cells(PSCs)for the donor materials based on benzo[1,2-b:4,5-b′]dithiophene(BDT)has significantly boosted the power conversion efficiency(PCE).However,the PCE of polymer donor material...The development of polymer solar cells(PSCs)for the donor materials based on benzo[1,2-b:4,5-b′]dithiophene(BDT)has significantly boosted the power conversion efficiency(PCE).However,the PCE of polymer donor materials for benzo[1,2-b:4,5-b′]difuran(BDF)-based lags far behind that of their BDT analogs.To further explore efficient copolymers based on BDF units,a two-dimensional(2D)side-chain strategy was proposed to investigate the atom-changing effects on the copolymer donors for the properties of electron and optical.In this study,we designed and synthesized three new BDF-based copolymer donor materials,named PBDF-C,PBDF-O,and PBDF-S.Owing to the balanced charge transport and favorable phase separation of PBDF-S:Y6,a high PCE of 13.4%,a short-circuit current(J sc)of 25.48 mA cm−2,an open-circuit voltage(V oc)of 0.721 V,and a fill factor(FF)of 72.6%was obtained.This research demonstrates that the BDF building block has great potential for constructing conjugated copolymer donors for high-performance PSCs and that 2D side-chain modification is a facile approach for designing high-performance BDF-based copolymer materials.展开更多
基金supported by the National Natural Sci-ence Foundation of China(Grant Nos.51825301 and 52022099)China Postdoctoral Science Foundation(BX20190023)H.Y.W acknowl-edges the financial support of the National Research Foundation of Ko-rea(2019R1A6A1A11044070).
文摘The development of polymer solar cells(PSCs)for the donor materials based on benzo[1,2-b:4,5-b′]dithiophene(BDT)has significantly boosted the power conversion efficiency(PCE).However,the PCE of polymer donor materials for benzo[1,2-b:4,5-b′]difuran(BDF)-based lags far behind that of their BDT analogs.To further explore efficient copolymers based on BDF units,a two-dimensional(2D)side-chain strategy was proposed to investigate the atom-changing effects on the copolymer donors for the properties of electron and optical.In this study,we designed and synthesized three new BDF-based copolymer donor materials,named PBDF-C,PBDF-O,and PBDF-S.Owing to the balanced charge transport and favorable phase separation of PBDF-S:Y6,a high PCE of 13.4%,a short-circuit current(J sc)of 25.48 mA cm−2,an open-circuit voltage(V oc)of 0.721 V,and a fill factor(FF)of 72.6%was obtained.This research demonstrates that the BDF building block has great potential for constructing conjugated copolymer donors for high-performance PSCs and that 2D side-chain modification is a facile approach for designing high-performance BDF-based copolymer materials.