期刊文献+
共找到8,176篇文章
< 1 2 250 >
每页显示 20 50 100
基于BERT模型的医疗安全事件智能分类研究与实践 被引量:1
1
作者 赵从朴 袁达 +3 位作者 朱溥珏 周炯 陈政 彭华 《医学信息学杂志》 CAS 2024年第1期27-32,38,共7页
目的/意义改进医疗安全事件分类评估模式,提升工作效率和时效性。方法/过程选取既往医疗安全事件数据进行预处理,利用BERT模型进行训练、测试、迭代优化,构建医疗安全事件智能分类预测模型。结果/结论利用该模型对2022年1-11月临床科室... 目的/意义改进医疗安全事件分类评估模式,提升工作效率和时效性。方法/过程选取既往医疗安全事件数据进行预处理,利用BERT模型进行训练、测试、迭代优化,构建医疗安全事件智能分类预测模型。结果/结论利用该模型对2022年1-11月临床科室上报的466例医疗安全事件进行分类,F1值达0.66。将BERT模型应用于医疗安全事件分类评估辅助,可提升工作效率和时效性,有助于及时干预医疗安全风险隐患。 展开更多
关键词 医疗安全事件 bert 深度学习 智能分类
下载PDF
基于BERT与生成对抗的民航陆空通话意图挖掘 被引量:1
2
作者 马兰 孟诗君 吴志军 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期740-750,共11页
针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transf... 针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transformers,BERT)与生成对抗网络(generative adversarial network,GAN)的陆空通话意图信息挖掘方法,并引入航班池信息对提取的部分信息进行校验修正,形成空中交通管制(air traffic control,ATC)系统可理解的结构化信息。首先,使用改进的GAN模型进行陆空通话智能文本生成,可有效进行数据增强,平衡各类实体信息分布并扩充数据集;然后,根据欧洲单一天空空中交通管理项目定义的本体规则进行意图的分类与标注;之后,通过BERT预训练模型生成字向量并解决一词多义问题,利用双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络双向编码提取上下句语义特征,同时将该语义特征送入条件随机场(conditional random field,CRF)模型进行推理预测,学习标签的依赖关系并加以约束,以获取全局最优结果;最后,根据编辑距离(edit distance,ED)算法进行意图信息合理性校验与修正。对比实验结果表明,所提方法的宏平均F_(1)值达到了98.75%,在民航陆空通话数据集上的意图挖掘性能优于其他主流模型,为其加入数字化进程奠定了基础。 展开更多
关键词 民航陆空通话 信息提取 生成对抗网络 本体 双向转换编码器
下载PDF
基于BERT和CNN的药物不良反应个例报道文献分类方法
3
作者 孟祥福 任全莹 +3 位作者 杨东燊 李可千 姚克宇 朱彦 《计算机科学》 CSCD 北大核心 2024年第S01期1104-1109,共6页
在临床上,药物不良反应导致的死亡和用药不当造成的住院及门诊费急剧升高,成为临床安全合理用药面临的主要问题之一。目前对药物不良反应的回顾性分析和文献分析多以公开发表的文献资料为依据。学术文献作为重要的数据来源之一,如何自... 在临床上,药物不良反应导致的死亡和用药不当造成的住院及门诊费急剧升高,成为临床安全合理用药面临的主要问题之一。目前对药物不良反应的回顾性分析和文献分析多以公开发表的文献资料为依据。学术文献作为重要的数据来源之一,如何自动批量地对其进行数据处理尤为重要。针对医药文本独特的表述方式,基于BERT及其组合模型进行文本分类技术比对实验,建立对药物不良反应个例报道文献数据进行高效快速分类的方法,进而分辨出药物不良反应的类型,有效预警药害事件。实验结果表明,使用BERT模型的分类准确率达到99.75%,其可以准确高效地对药物不良反应个例报道文献进行分类,在辅助医疗、构建医学文本结构化数据等方面均具有重要的价值和意义,进而能够更好地维护公众健康。 展开更多
关键词 药物不良反应 个例文献报道 医学文本分类 深度学习 bert
下载PDF
基于BERT-BiLSTM的油田安全生产隐患文本分类
4
作者 陈晨 石赫 +1 位作者 徐悦 张新梅 《科学技术与工程》 北大核心 2024年第29期12650-12657,共8页
事故隐患分类能够直观反映企业安全生产管理的薄弱点,同时将直接决定企业优化安全管理工作的方向。油田安全生产过程中,隐患种类多,数据量大,单纯依赖人工方式分类及管理效率较低,且难以发掘数据中蕴含的潜在规律。基于油田安全生产的... 事故隐患分类能够直观反映企业安全生产管理的薄弱点,同时将直接决定企业优化安全管理工作的方向。油田安全生产过程中,隐患种类多,数据量大,单纯依赖人工方式分类及管理效率较低,且难以发掘数据中蕴含的潜在规律。基于油田安全生产的需求及事故隐患特征,提出了一种基于BERT-BiLSTM的分类模型,用于油田安全生产隐患文本的主题自动分类,通过基于Transformer的双向编码器表示(bidirectionalencoder representations from Transformer,BERT)模型提取输入文本的字符级特征,生成全局文本信息的向量表示,再通过双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)模型对局部关键信息和上下文深层次特征进行特征提取,进而通过Softmax激活函数进行概率计算得到分类结果。通过与传统分类方法的比较表明,BERT-BiLSTM分类模型在加权平均准确率、加权平均召回率和加权平均F_(1)等指标方面均有所改善,模型与油田企业现有安全管理信息系统的有机融合将为进一步提升油田企业的事故隐患管理针对性,推动企业安全管理从事后被动反应向事前主动预防转变提供重要的技术支撑。 展开更多
关键词 隐患管理 油田安全生产 文本分类 bert模型 BiLSTM模型
下载PDF
基于BERT古文预训练模型的实体关系联合抽取
5
作者 李智杰 杨盛杰 +3 位作者 李昌华 张颉 董玮 介军 《计算机系统应用》 2024年第8期187-195,共9页
古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模... 古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模型(entity relation joint extraction model based on BERT-ancient-Chinese pretrained model,JEBAC).首先,通过融合BiLSTM神经网络和注意力机制的BERT古文预训练模型(BERT-ancientChinese pre-trained model integrated BiLSTM neural network and attention mechanism,BACBA),识别出句中所有的subject实体和object实体,为关系和object实体联合抽取提供依据.接下来,将subject实体的归一化编码向量与整个句子的嵌入向量相加,以更好地理解句中subject实体的语义特征;最后,结合带有subject实体特征的句子向量和object实体的提示信息,通过BACBA实现句中关系和object实体的联合抽取,从而得到句中所有的三元组信息(subject实体,关系,object实体).在中文实体关系抽取DuIE2.0数据集和CCKS 2021的文言文实体关系抽取CCLUE小样本数据集上,与现有的方法进行了性能比较.实验结果表明,该方法在抽取性能上更加有效,F1值分别可达79.2%和55.5%. 展开更多
关键词 古汉语文本 实体关系抽取 bert古文预训练模型 BiLSTM 注意力 三元组信息
下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究
6
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 bert 特征提取 双向长短时记忆网络(BiLSTM)
下载PDF
基于BERT模型的空管危险源文本数据挖掘
7
作者 杨昌其 姜美岑 林灵 《航空计算技术》 2024年第4期89-93,共5页
由于危险源与安全隐患在民航安全管理工作中容易出现概念混淆和记录混乱的情况,根据双重预防机制管理规定,需要将两者区分开来。通过在ASIS系统上采集得到空管危险源控制清单作为研究对象,并对其进行相应的文本数据挖掘工作。根据危险... 由于危险源与安全隐患在民航安全管理工作中容易出现概念混淆和记录混乱的情况,根据双重预防机制管理规定,需要将两者区分开来。通过在ASIS系统上采集得到空管危险源控制清单作为研究对象,并对其进行相应的文本数据挖掘工作。根据危险源与安全隐患特点构建相应的文本分类模型:首先通过文本清洗、去停用词、Jieba分词等对空管危险源控制清单进行预处理,然后基于BERT模型生成词向量,采用BERT-Base-Chinese预训练模型进行预训练,并对模型进行微调超参数,最后结合Softmax分类器得到分类结果。 展开更多
关键词 文本分类 数据挖掘 bert模型 危险源 安全隐患
下载PDF
BTM-BERT模型在民航机务维修安全隐患自动分类中的应用
8
作者 陈芳 张亚博 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4366-4373,共8页
为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行... 为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行监管”等12类安全隐患。最后,根据BTM主题模型标注的数据集对算法进行微调,构建了基于变换器的双向编码(Bidirectional Encoder Representations from Transformers,BERT)算法的机务维修安全隐患记录自动分类模型,并与传统的分类算法进行对比。结果表明:所构建的模型可以实现民航机务维修安全隐患自动分类,其效果远高于传统机器学习支持向量机算法的效果,构建的分类模型的精确率、召回率和F 1较文本卷积神经网络算法分别提升了0.12、0.14和0.14,总体准确率达到了93%。 展开更多
关键词 安全工程 机务维修 词对主题模型(BTM) 基于变换器的双向编码(bert) 安全隐患 文本分类
下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究 被引量:2
9
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短时记忆网络 条件随机场
下载PDF
基于Bert的合同文本实体识别
10
作者 王浩畅 许亚琼 《计算机与数字工程》 2024年第9期2697-2701,2758,共6页
智慧合同发展的基础性任务就是对合同实体要素进行命名实体识别研究。论文通过人工订制标注规则,构建了包括合同名称、包装条款、验收条款、违约条款等23类实体的合同数据集;对于构建好的合同数据集,采用Bert-BiLSTM-CRF神经网络模型进... 智慧合同发展的基础性任务就是对合同实体要素进行命名实体识别研究。论文通过人工订制标注规则,构建了包括合同名称、包装条款、验收条款、违约条款等23类实体的合同数据集;对于构建好的合同数据集,采用Bert-BiLSTM-CRF神经网络模型进行训练,通过对比23个合同要素的识别结果,以及与经典的神经网络模型进行对比实验结果表明,论文所用模型能够更加有效地应用于合同文本实体识别的任务。 展开更多
关键词 合同文本 命名实体识别 bert
下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
11
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
下载PDF
基于BERT和图注意力网络的篇章级事件论元识别
12
作者 王凯 廖涛 《现代计算机》 2024年第6期14-19,64,共7页
事件论元识别是事件抽取的子任务之一,其目的在于识别文本中与事件相关的论元及论元对应的论元角色。研究表明,句子的依存句法关系有助于事件论元任务识别,然而,在构造篇章的依存句法关系时容易引入不相关的论元产生噪声问题,现有方法... 事件论元识别是事件抽取的子任务之一,其目的在于识别文本中与事件相关的论元及论元对应的论元角色。研究表明,句子的依存句法关系有助于事件论元任务识别,然而,在构造篇章的依存句法关系时容易引入不相关的论元产生噪声问题,现有方法对噪声问题处理不佳。针对该问题,提出了一个基于BERT和图注意力网络的篇章级事件论元识别模型。该模型从两个角度去解决噪声问题,一方面,通过获取充分的篇章语义特征作为辅助,去构建更有效的篇章依存句法特征;另一方面,采用图注意力网络对不同的论元节点分配不同的权重,从而去除掉无效的论元。在RAMS语料库上的实验结果表明,该方法有效解决了篇章依存句法关系中存在的噪声问题,取得了较好的篇章级事件论元识别结果。 展开更多
关键词 篇章级事件论元识别 依存句法关系 bert 图注意力网络
下载PDF
基于LDA-BERT相似性测度模型的文本主题演化研究 被引量:2
13
作者 海骏林峰 严素梅 +1 位作者 陈荣 李建霞 《图书馆工作与研究》 CSSCI 北大核心 2024年第1期72-79,共8页
文章针对LDA主题模型在提取文本主题时忽略文本语义关联的问题,提出基于LDA-BERT的相似性测度模型:首先,结合利用TF-IDF和TextRank方法提取文本特征词,利用LDA主题模型挖掘文本主题;其次,通过嵌入BERT模型,结合LDA主题模型构建的主题-... 文章针对LDA主题模型在提取文本主题时忽略文本语义关联的问题,提出基于LDA-BERT的相似性测度模型:首先,结合利用TF-IDF和TextRank方法提取文本特征词,利用LDA主题模型挖掘文本主题;其次,通过嵌入BERT模型,结合LDA主题模型构建的主题-主题词概率分布,从词粒度层面表示主题向量;最后,利用余弦相似度算法计算主题之间的相似度。在相似性测度模型基础上构建向量相似度指标分析文献研究主题之间的关联,并绘制主题演化知识图谱。通过智慧图书馆领域的实证研究发现,使用LDA-BERT模型计算出的主题相似度结果相较于LDA主题模型的计算结果更加准确,与实际情况更相符。 展开更多
关键词 相似性测度 LDA-bert模型 LDA模型 bert模型 主题演化
下载PDF
基于知识蒸馏改进双路BERT的经济类文本情感分析
14
作者 汪珶 《山西师范大学学报(自然科学版)》 2024年第1期39-44,共6页
在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由... 在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由于特定领域文本的专业性和大标签数据集的不适用性,经济类文本情感分析给传统的情感分析模型带来了巨大的挑战.当将一般情感分析模型应用于经济等特定领域时,模型在准确率与召回率上表现较差.为了克服这些挑战,文章针对财经新闻平台上的经济类文本的情感分析任务,从词表示模型出发,提出了基于知识蒸馏方法的双路BERT(Two-way BERT based on knowledge distillation method)情感分析模型,与文本卷积神经网络(Text-CNN)、卷积递归神经网络(CRNN)、双向长时和短时记忆网络(Bi-LSTM)等算法进行对比实验,结果得出该改进方法相较于其他算法在准确率、召回率和F1值均提升了1%~3%,具有较好的泛化性能. 展开更多
关键词 知识蒸馏 双路bert 经济文本情感分析
下载PDF
基于掩码语言模型的中文BERT攻击方法 被引量:1
15
作者 张云婷 叶麟 +2 位作者 唐浩林 张宏莉 李尚 《软件学报》 EI CSCD 北大核心 2024年第7期3392-3409,共18页
对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本,敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本.研究对抗文本生成方法,能对深度神经网络的鲁棒性进行评价,并助力于模型后续的鲁棒性提升... 对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本,敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本.研究对抗文本生成方法,能对深度神经网络的鲁棒性进行评价,并助力于模型后续的鲁棒性提升工作.当前针对中文文本设计的对抗文本生成方法中,很少有方法将鲁棒性较强的中文BERT模型作为目标模型进行攻击.面向中文文本分类任务,提出一种针对中文BERT的攻击方法Chinese BERT Tricker.该方法使用一种汉字级词语重要性打分方法——重要汉字定位法;同时基于掩码语言模型设计一种包含两类策略的适用于中文的词语级扰动方法实现对重要词语的替换.实验表明,针对文本分类任务,所提方法在两个真实数据集上均能使中文BERT模型的分类准确率大幅下降至40%以下,且其多种攻击性能明显强于其他基线方法. 展开更多
关键词 深度神经网络 对抗样本 文本对抗攻击 中文bert 掩码语言模型
下载PDF
基于BERT-LDA的国外LIS领域学科交叉研究演化分析与前沿主题识别
16
作者 袁毅 孟盈 《数字图书馆论坛》 CSSCI 2024年第9期1-15,共15页
识别学科交叉研究的前沿主题,并对演化趋势进行分析,有助于揭示学科交叉融合的方向,为未来创新性、突破性研究提供参考。首先,基于引文视角构建测度论文学科交叉性的指标,识别具有学科交叉性的研究论文;其次,通过BERT-LDA模型识别研究主... 识别学科交叉研究的前沿主题,并对演化趋势进行分析,有助于揭示学科交叉融合的方向,为未来创新性、突破性研究提供参考。首先,基于引文视角构建测度论文学科交叉性的指标,识别具有学科交叉性的研究论文;其次,通过BERT-LDA模型识别研究主题,利用余弦相似度计算主题之间的相似度,构建主题演化路径;最后,基于新颖度、增长性、关注度、影响力构建前沿主题识别指标体系,识别具有前沿性的学科交叉研究主题。以图书情报学(Library and Information Science,LIS)为例展开研究,研究结果显示,2004—2023年该学科领域的交叉研究主题呈现出逐渐细化和深入的特点,主要集中在信息挖掘与知识发现、互联网信息行为、医疗信息学3个方面;现阶段学科交叉研究前沿主题为医疗数据模型、舆情治理与情感分析、机器学习与深度学习;基于信息技术的研究方法和其在不同领域的应用研究具有良好的应用前景,有可能成为未来LIS领域的核心研究主题。 展开更多
关键词 研究前沿 主题演化 学科交叉 bert-LDA 主题识别 图书情报学 信息科学 图书馆学
下载PDF
基于BERT和TextCNN的智能制造成熟度评估方法 被引量:1
17
作者 张淦 袁堂晓 +1 位作者 汪惠芬 柳林燕 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期852-863,共12页
随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,... 随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,设计了一种新的评估流程,采用文本处理算法对整个评估过程进行了重构,通过利用国标文件中智能制造成熟度评估标准,将其作为训练集,采用基于预训练语言模型与文本神经网络(BERT+TextCNN)相结合的智能评估算法代替人工评估。在真实的企业智能制造数据集上的验证表明,当BERT+TextCNN评估模型在卷积核为[2,3,4]、迭代次数为6次、学习率为3e-5时,对智能制造成熟度进行评估,准确率达到85.32%。这表明所设计的评估方法能够较准确地帮助企业完成智能制造成熟度自评估,有助于企业了解自身智能制造能力水平,制定正确的发展方向。 展开更多
关键词 智能制造成熟度模型 bert预训练语言模型 文本卷积神经网络 评估过程重构
下载PDF
基于改进TF-IDF与BERT的领域情感词典构建方法 被引量:1
18
作者 蒋昊达 赵春蕾 +1 位作者 陈瀚 王春东 《计算机科学》 CSCD 北大核心 2024年第S01期150-158,共9页
领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于... 领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于改进词频-逆文档频率(TF-IDF)与BERT的领域情感词典构建方法。该方法在筛选领域候选情感词阶段对TF-IDF算法进行改进,将隐含狄利克雷分布(LDA)算法与改进后的TF-IDF算法结合,进行领域性修正,提升了所筛选候选情感词的领域性;在候选情感词极性判断阶段,将情感倾向点互信息算法(SO-PMI)与BERT结合,利用领域情感词微调BERT分类模型,提高了判断领域候选情感词情感极性的准确程度。在不同领域的用户评论数据集上进行实验,结果表明,该方法可以提高所构建领域情感词典的质量,使用该方法构建的领域情感词典用于汽车领域和手机领域文本情感分析的F1值分别达到78.02%和88.35%。 展开更多
关键词 情感分析 领域情感词典 词频-逆文档频率 隐含狄利克雷分布 情感倾向点互信息算法 bert模型
下载PDF
融合BERT模型与词汇增强的中医命名实体识别模型 被引量:1
19
作者 李旻哲 殷继彬 《计算机科学》 CSCD 北大核心 2024年第S01期122-127,共6页
现有的中医命名实体识别相关研究较少,基本都是基于中文病例做相关研究,在传统中医编写的病例文本中表现不佳。针对中医案例中命名实体密集且边界模糊难以划分的特点,提出了一种融合词汇增强和预训练模型的中医命名实体识别方法LEBERT-B... 现有的中医命名实体识别相关研究较少,基本都是基于中文病例做相关研究,在传统中医编写的病例文本中表现不佳。针对中医案例中命名实体密集且边界模糊难以划分的特点,提出了一种融合词汇增强和预训练模型的中医命名实体识别方法LEBERT-BILSTM-CRF。该方法从词汇增强和预训练模型融合的角度进行优化,将词汇信息输入到BERT模型中进行特征学习,达到划分词类边界和区分词类属性的目的,提高中医医案命名实体识别的精度。实验结果表明,在文中构建的中医病例数据集上针对10个实体进行命名实体识别时,提出的基于LEBERT-BILSTM-CRF的中医案例命名实体识别模型综合准确率、召回率、F1分别为88.69%,87.4%,88.1%,高于BERT-CRF,LEBERT-CRF等常用命名实体识别模型。 展开更多
关键词 自然语言处理 中医案例 词汇增强 bert BLSTM-CRF
下载PDF
基于BERT的电子病历命名实体识别 被引量:2
20
作者 郑立瑞 肖晓霞 +2 位作者 邹北骥 刘彬 周展 《计算机与现代化》 2024年第1期87-91,共5页
电子病历是保存、管理、传输病人医疗记录的重要资源,是医生诊治疾病的重要文本记录。通过电子病历命名实体识别(NER)技术能够高效、智能地从电子病历中抽取症状、疾病、药名等诊疗信息,有利于结构化电子病历,使之能够使用机器学习等技... 电子病历是保存、管理、传输病人医疗记录的重要资源,是医生诊治疾病的重要文本记录。通过电子病历命名实体识别(NER)技术能够高效、智能地从电子病历中抽取症状、疾病、药名等诊疗信息,有利于结构化电子病历,使之能够使用机器学习等技术进行诊疗规律挖掘。为了高效识别电子病历中的命名实体,提出一种融合对抗训练(FGM)的基于BERT与双向长短期记忆网络(BILSTM)的命名实体识别方法(BERT-BILSTM-CRF-FGM,BBCF),对2017全国知识图谱与语义计算大会(CCKS2017)提供的中文电子病历语料做修正等预处理后,采用BBCF模型识别该语料中5种实体的平均F1值为92.84%,比基于膨胀卷积网络的BERT模型(BERT-IDCNN-CRF)和基于BILSTM的条件随机场模型(BILSTM-CRF)有更高的F1值和更快的收敛速度,能够更加高效地结构化电子病历文本。 展开更多
关键词 电子病历 命名实体识别 bert FGM 双向长短期记忆网络 条件随机场
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部