古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模...古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模型(entity relation joint extraction model based on BERT-ancient-Chinese pretrained model,JEBAC).首先,通过融合BiLSTM神经网络和注意力机制的BERT古文预训练模型(BERT-ancientChinese pre-trained model integrated BiLSTM neural network and attention mechanism,BACBA),识别出句中所有的subject实体和object实体,为关系和object实体联合抽取提供依据.接下来,将subject实体的归一化编码向量与整个句子的嵌入向量相加,以更好地理解句中subject实体的语义特征;最后,结合带有subject实体特征的句子向量和object实体的提示信息,通过BACBA实现句中关系和object实体的联合抽取,从而得到句中所有的三元组信息(subject实体,关系,object实体).在中文实体关系抽取DuIE2.0数据集和CCKS 2021的文言文实体关系抽取CCLUE小样本数据集上,与现有的方法进行了性能比较.实验结果表明,该方法在抽取性能上更加有效,F1值分别可达79.2%和55.5%.展开更多
目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签...目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签混淆模型(Label Confusion Model,LCM),提出一种基于BERT和LCM的文本分类模型(Model Based on BERT and Label Confusion,BLC),对文本和标签的特征进一步做了处理。充分利用BERT每一层的句向量和最后一层的词向量,结合双向长短时记忆网络(Bi-LSTM)得到文本表示,来替代BERT原始的文本特征表示。标签在进入LCM之前,使用自注意力网络和Bi-LSTM提高标签之间相互依赖关系,从而提高最终的分类性能。在4个文本分类基准数据集上的实验结果证明了所提模型的有效性。展开更多
针对油气领域知识图谱构建过程中命名实体识别使用传统方法存在实体特征信息提取不准确、识别效率低的问题,提出了一种基于BERT-BiLSTM-CRF模型的命名实体识别研究方法。该方法首先利用BERT(bidirectional encoder representations from...针对油气领域知识图谱构建过程中命名实体识别使用传统方法存在实体特征信息提取不准确、识别效率低的问题,提出了一种基于BERT-BiLSTM-CRF模型的命名实体识别研究方法。该方法首先利用BERT(bidirectional encoder representations from transformers)预训练模型得到输入序列语义的词向量;然后将训练后的词向量输入双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)模型进一步获取上下文特征;最后根据条件随机场(conditional random fields,CRF)的标注规则和序列解码能力输出最大概率序列标注结果,构建油气领域命名实体识别模型框架。将BERT-BiLSTM-CRF模型与其他2种命名实体识别模型(BiLSTM-CRF、BiLSTM-Attention-CRF)在包括3万多条文本语料数据、4类实体的自建数据集上进行了对比实验。实验结果表明,BERT-BiLSTM-CRF模型的准确率(P)、召回率(R)和F_(1)值分别达到91.3%、94.5%和92.9%,实体识别效果优于其他2种模型。展开更多
本研究旨在通过文本挖掘方法研究消费者的需求和偏好。通过收集和预处理天猫商城的服装商品的在线评论数据,应用BERT-LDA模型进行分析,发现消费者在购物体验、服装特性和服装品质方面呈现出多样化的关注度和情感积极率。研究结果表明,...本研究旨在通过文本挖掘方法研究消费者的需求和偏好。通过收集和预处理天猫商城的服装商品的在线评论数据,应用BERT-LDA模型进行分析,发现消费者在购物体验、服装特性和服装品质方面呈现出多样化的关注度和情感积极率。研究结果表明,虚拟试穿等新型产品体验方式将深刻影响消费者的购买决策。消费者提高了对服装的可持续性的关注程度,倾向于选择实用性强、易于回收利用,且能“一衣多穿”的服装。基于该研究结果,本文为服装电商行业的市场营销提供了有益的参考和指导。The purpose of this study is to study consumers’ needs and preferences through text mining methods. By collecting and preprocessing online review data of clothing products on Tmall and applying BERT-LDA model for analysis, it is found that consumers show diversified attention and positive emotional rate in terms of shopping experience, clothing characteristics and clothing quality. The results show that new product experience methods such as virtual trying on will profoundly affect consumers’ purchasing decisions. Consumers are paying more attention to the sustainability of clothing, and tend to choose clothes that are practical, easy to recycle, and can be worn more than once. Based on the research results, this paper provides useful reference and guidance for the marketing of apparel e-commerce industry.展开更多
随着数字农业的快速发展,农作物命名实体识别作为农业领域知识图谱构建的基础,成为一种高效率的农作物研究领域识别方法。由于农作物实体识别呈现结构复杂、实体指称不一致、干扰因素多等特征,严重制约了农作物领域实体识别的性能,提出...随着数字农业的快速发展,农作物命名实体识别作为农业领域知识图谱构建的基础,成为一种高效率的农作物研究领域识别方法。由于农作物实体识别呈现结构复杂、实体指称不一致、干扰因素多等特征,严重制约了农作物领域实体识别的性能,提出一种基于预训练语言模型的实体识别模型,使用BERT为文本中词进行编码、采用双向LSTM(Long-Short Term Memory)获取句子中关键词的上下文,采用CRFs(Conditional Random Fields)捕获词之间的依赖关系,并结合所构建的农作物命名实体识别数据集进行验证。实验证明该模型能够有效对农作物实体进行识别,且性能优于当前已有的实体识别模型。展开更多
文摘古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模型(entity relation joint extraction model based on BERT-ancient-Chinese pretrained model,JEBAC).首先,通过融合BiLSTM神经网络和注意力机制的BERT古文预训练模型(BERT-ancientChinese pre-trained model integrated BiLSTM neural network and attention mechanism,BACBA),识别出句中所有的subject实体和object实体,为关系和object实体联合抽取提供依据.接下来,将subject实体的归一化编码向量与整个句子的嵌入向量相加,以更好地理解句中subject实体的语义特征;最后,结合带有subject实体特征的句子向量和object实体的提示信息,通过BACBA实现句中关系和object实体的联合抽取,从而得到句中所有的三元组信息(subject实体,关系,object实体).在中文实体关系抽取DuIE2.0数据集和CCKS 2021的文言文实体关系抽取CCLUE小样本数据集上,与现有的方法进行了性能比较.实验结果表明,该方法在抽取性能上更加有效,F1值分别可达79.2%和55.5%.
文摘目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签混淆模型(Label Confusion Model,LCM),提出一种基于BERT和LCM的文本分类模型(Model Based on BERT and Label Confusion,BLC),对文本和标签的特征进一步做了处理。充分利用BERT每一层的句向量和最后一层的词向量,结合双向长短时记忆网络(Bi-LSTM)得到文本表示,来替代BERT原始的文本特征表示。标签在进入LCM之前,使用自注意力网络和Bi-LSTM提高标签之间相互依赖关系,从而提高最终的分类性能。在4个文本分类基准数据集上的实验结果证明了所提模型的有效性。
文摘源代码漏洞检测常使用代码指标、机器学习和深度学习等技术.但是这些技术存在无法保留源代码中的句法和语义信息、需要大量专家知识对漏洞特征进行定义等问题.为应对现有技术存在的问题,提出基于BERT(bidirectional encoder representations from transformers)模型的源代码漏洞检测模型.该模型将需要检测的源代码分割为多个小样本,将每个小样本转换成近似自然语言的形式,通过BERT模型实现源代码中漏洞特征的自动提取,然后训练具有良好性能的漏洞分类器,实现Python语言多种类型漏洞的检测.该模型在不同类型的漏洞中实现了平均99.2%的准确率、97.2%的精确率、96.2%的召回率和96.7%的F1分数的检测水平,对比现有的漏洞检测方法有2%~14%的性能提升.实验结果表明,该模型是一种通用的、轻量级的、可扩展的漏洞检测方法.
文摘针对油气领域知识图谱构建过程中命名实体识别使用传统方法存在实体特征信息提取不准确、识别效率低的问题,提出了一种基于BERT-BiLSTM-CRF模型的命名实体识别研究方法。该方法首先利用BERT(bidirectional encoder representations from transformers)预训练模型得到输入序列语义的词向量;然后将训练后的词向量输入双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)模型进一步获取上下文特征;最后根据条件随机场(conditional random fields,CRF)的标注规则和序列解码能力输出最大概率序列标注结果,构建油气领域命名实体识别模型框架。将BERT-BiLSTM-CRF模型与其他2种命名实体识别模型(BiLSTM-CRF、BiLSTM-Attention-CRF)在包括3万多条文本语料数据、4类实体的自建数据集上进行了对比实验。实验结果表明,BERT-BiLSTM-CRF模型的准确率(P)、召回率(R)和F_(1)值分别达到91.3%、94.5%和92.9%,实体识别效果优于其他2种模型。
文摘目前高血压已成为严重危害全球公共健康的重大问题。区别于传统的侵入式和袖带法的血压测量方式,为实时监测血压并助力早期诊断,本文专注于研究脉搏波波形与血压之间的内在关系,并提出了一种使用脉搏波的基于改进BERT(Bidirectional encoder representationns from transformers)模型的血压预测方法。方法首先应用巴特沃斯滤波器对原始脉搏波信号进行滤波预处理并周期性划分,然后结合深度学习技术,采用改进后的BERT模型,对划分后的脉搏波周期数据进行特征提取和分析。为验证本方法预测的有效性和准确性,采用MIMIC-Ⅲ数据库的数据进行实验。实验结果表明,本方法可以有效预测血压值,完全满足英国高血压学会的A类标准。通过深入研究脉搏波与血压的关系,本文改进BERT模型为高血压的预测与诊断提供了新的技术手段。
文摘本研究旨在通过文本挖掘方法研究消费者的需求和偏好。通过收集和预处理天猫商城的服装商品的在线评论数据,应用BERT-LDA模型进行分析,发现消费者在购物体验、服装特性和服装品质方面呈现出多样化的关注度和情感积极率。研究结果表明,虚拟试穿等新型产品体验方式将深刻影响消费者的购买决策。消费者提高了对服装的可持续性的关注程度,倾向于选择实用性强、易于回收利用,且能“一衣多穿”的服装。基于该研究结果,本文为服装电商行业的市场营销提供了有益的参考和指导。The purpose of this study is to study consumers’ needs and preferences through text mining methods. By collecting and preprocessing online review data of clothing products on Tmall and applying BERT-LDA model for analysis, it is found that consumers show diversified attention and positive emotional rate in terms of shopping experience, clothing characteristics and clothing quality. The results show that new product experience methods such as virtual trying on will profoundly affect consumers’ purchasing decisions. Consumers are paying more attention to the sustainability of clothing, and tend to choose clothes that are practical, easy to recycle, and can be worn more than once. Based on the research results, this paper provides useful reference and guidance for the marketing of apparel e-commerce industry.
文摘随着数字农业的快速发展,农作物命名实体识别作为农业领域知识图谱构建的基础,成为一种高效率的农作物研究领域识别方法。由于农作物实体识别呈现结构复杂、实体指称不一致、干扰因素多等特征,严重制约了农作物领域实体识别的性能,提出一种基于预训练语言模型的实体识别模型,使用BERT为文本中词进行编码、采用双向LSTM(Long-Short Term Memory)获取句子中关键词的上下文,采用CRFs(Conditional Random Fields)捕获词之间的依赖关系,并结合所构建的农作物命名实体识别数据集进行验证。实验证明该模型能够有效对农作物实体进行识别,且性能优于当前已有的实体识别模型。