The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, thi...The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, this new method determines the new update by applying the updating formula m times to an initial positive diagonal matrix using the m previous pairs of the change in iteration and gradient. Besides the most recent pair of the change, which guarantees the quadratic termination, the choice of the other ( m -1) pairs of the change in the new method is dependent on the degree of numerical linear independence of previous search directions. In addition, the numerical linear independence theory is further discussed and the computation of the degree of linear independence is simplified. Theoretical and numerical results show that this new modified method improves efficiently the standard limited memory method.展开更多
With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an effi...With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.展开更多
According to the sequential BFGS method, in this paper we present an asynchronous parallel BFGS method in the case when the gradient information about the function is inexact. We assume that we have p + q processors, ...According to the sequential BFGS method, in this paper we present an asynchronous parallel BFGS method in the case when the gradient information about the function is inexact. We assume that we have p + q processors, which are divided-into two groups, the first group has p processors, the second group has q processors, the two groups are asynchronous. parallel, If we assume the objective function is twice continuously differentiable and uniformly convex, we prove the iteration converge globally to the solution, and under some additional conditions we show the method is superlinearly convergent. Finally, we show the numerical results of this algorithm.展开更多
In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmo...In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.展开更多
In this paper we propose an algorithm based on the BFGS Quasi-Newton method to solve a linear program. The choice of this method is justified by its theoretical efficiency, the ease to determine a descent direction an...In this paper we propose an algorithm based on the BFGS Quasi-Newton method to solve a linear program. The choice of this method is justified by its theoretical efficiency, the ease to determine a descent direction and its fast convergence towards an optimal solution. Our proposed method is compared with Newton's method for linear program named lpnew, widely used as an optimization algorithm for classification problems.展开更多
文摘The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, this new method determines the new update by applying the updating formula m times to an initial positive diagonal matrix using the m previous pairs of the change in iteration and gradient. Besides the most recent pair of the change, which guarantees the quadratic termination, the choice of the other ( m -1) pairs of the change in the new method is dependent on the degree of numerical linear independence of previous search directions. In addition, the numerical linear independence theory is further discussed and the computation of the degree of linear independence is simplified. Theoretical and numerical results show that this new modified method improves efficiently the standard limited memory method.
基金supported by the Major National Science&Technology Projects(2010ZX03006-002-04)the National Natural Science Foundation of China(61072070)+4 种基金the Doctorial Programs Foundation of the Ministry of Education(20110203110011)the"111 Project"(B08038)the Fundamental Research Funds of the Ministry of Education(72124338)the Key Programs for Natural Science Foundation of Shanxi Province(2012JZ8002)the Foundation of State Key Laboratory of Integrated Services Networks(ISN1101002)
文摘With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.
文摘According to the sequential BFGS method, in this paper we present an asynchronous parallel BFGS method in the case when the gradient information about the function is inexact. We assume that we have p + q processors, which are divided-into two groups, the first group has p processors, the second group has q processors, the two groups are asynchronous. parallel, If we assume the objective function is twice continuously differentiable and uniformly convex, we prove the iteration converge globally to the solution, and under some additional conditions we show the method is superlinearly convergent. Finally, we show the numerical results of this algorithm.
文摘In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.
文摘In this paper we propose an algorithm based on the BFGS Quasi-Newton method to solve a linear program. The choice of this method is justified by its theoretical efficiency, the ease to determine a descent direction and its fast convergence towards an optimal solution. Our proposed method is compared with Newton's method for linear program named lpnew, widely used as an optimization algorithm for classification problems.