期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
真菌BFM-X1对聚丁二酸丁二醇酯薄膜的降解过程 被引量:2
1
作者 梅雪立 梁英梅 +1 位作者 田呈明 董骞 《功能高分子学报》 CAS CSCD 北大核心 2013年第2期128-134,共7页
对菌株Bionectriasp.BFM-X1(简称BFM-X1)分别利用不同碳源对聚丁二酸丁二醇酯(PBS)薄膜的降解情况及降解后的残留膜进行了观察分析,揭示PBS薄膜的微生物降解过程。结果表明:菌株分别以PBS乳剂、葡萄糖、大豆油及甘油为唯一碳源时均能有... 对菌株Bionectriasp.BFM-X1(简称BFM-X1)分别利用不同碳源对聚丁二酸丁二醇酯(PBS)薄膜的降解情况及降解后的残留膜进行了观察分析,揭示PBS薄膜的微生物降解过程。结果表明:菌株分别以PBS乳剂、葡萄糖、大豆油及甘油为唯一碳源时均能有效降解PBS薄膜;降解过程表现为表面失去光泽期、裂纹状结构期、破碎期和完全降解期4个阶段,并存在迟滞期,且葡萄糖碳源下的降解速率快于其他碳源的;菌株的菌丝能在PBS膜表面上扩展生长是该菌株降解PBS的前提,真菌的寄生作用是前期降解的主要动力;降解过程中胞外酶的水解作用使聚合物的酯键水解,生成可被菌株同化吸收的小分子;菌株BFM-X1对PBS薄膜的降解首先发生在膜表面,非结晶部分先于结晶部分被降解。 展开更多
关键词 聚丁二酸丁二醇酯 生物降解 菌株bfm-x1 降解过程及机制
下载PDF
Influencing Factors and Process on <i>in Situ</i>Degradation of Poly(<i>Butylene Succinate</i>) Film by Strain <i>Bionectria ochroleuca</i>BFM-X1 in Soil
2
作者 Xueli Mei Chengming Tian +1 位作者 Qian Dong Yingmei Liang 《Journal of Environmental Protection》 2012年第6期523-532,共10页
This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butyle... This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil 展开更多
关键词 Poly(Butylene Succinate) (PBS) In Situ Biodegradation STRAIN B. ochroleuca bfm-x1 Temperature Humidity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部