This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the func...With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the function and beauty of the building while ignoring its impact on the environment.In addition,the lack of effective design and construction management methods also led to high resource and energy consumption.To overcome this challenge,the concept of green building came into being.Green buildings emphasize reducing the negative impact of buildings on the environment and improving resource utilization efficiency throughout the entire life cycle.BIM technology provides strong support for achieving this goal.Based on this,starting from the role of BIM technology in green building performance optimization,this article analyzes the optimization of green building performance solutions based on BIM technology in detail to promote the sustainable development of buildings.展开更多
The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
BIM技术(Building Information Modeling)和智能建造管理已经成为建筑行业未来发展进程中不可或缺的一项重要手段,二者的有机结合应用是提高建筑项目效率和质量的关键方式。本文阐述了BIM技术和智能建造,并以某高校新校区建设为例,分析...BIM技术(Building Information Modeling)和智能建造管理已经成为建筑行业未来发展进程中不可或缺的一项重要手段,二者的有机结合应用是提高建筑项目效率和质量的关键方式。本文阐述了BIM技术和智能建造,并以某高校新校区建设为例,分析了基于BIM的智能建造管理技术关键点,探讨BIM技术在智能建造管理中的应用,包括BIM技术在三维施工场地布置、施工安全管理、建筑智能化交付、运维管理、施工机械及材料安全管理中的应用,期望为推动建筑行业的数字化转型提供理论支持和实践指导。展开更多
本研究旨在利用建筑信息模型(Building Information Modeling,BIM)的技术优势实现从项目规划、设计、施工到运营和维护阶段的成本管理,首先详细论述BIM技术在工程项目全生命周期成本管理中的应用,然后阐述基于BIM技术的工程项目全生命...本研究旨在利用建筑信息模型(Building Information Modeling,BIM)的技术优势实现从项目规划、设计、施工到运营和维护阶段的成本管理,首先详细论述BIM技术在工程项目全生命周期成本管理中的应用,然后阐述基于BIM技术的工程项目全生命周期成本管理模式的构建路径。基于BIM技术的工程项目全生命周期成本管理模式通过建立统一的数据标准和模型集成,设计基于BIM的工作流程和信息交换机制,开发成本模型和风险评估模型,实现全面的成本控制和风险管理。这种模式的研究有助于增强成本预测的准确性和可靠性,优化项目的资源利用和决策制定,最终实现工程项目的成功交付和可持续发展。展开更多
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the function and beauty of the building while ignoring its impact on the environment.In addition,the lack of effective design and construction management methods also led to high resource and energy consumption.To overcome this challenge,the concept of green building came into being.Green buildings emphasize reducing the negative impact of buildings on the environment and improving resource utilization efficiency throughout the entire life cycle.BIM technology provides strong support for achieving this goal.Based on this,starting from the role of BIM technology in green building performance optimization,this article analyzes the optimization of green building performance solutions based on BIM technology in detail to promote the sustainable development of buildings.
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
文摘BIM技术(Building Information Modeling)和智能建造管理已经成为建筑行业未来发展进程中不可或缺的一项重要手段,二者的有机结合应用是提高建筑项目效率和质量的关键方式。本文阐述了BIM技术和智能建造,并以某高校新校区建设为例,分析了基于BIM的智能建造管理技术关键点,探讨BIM技术在智能建造管理中的应用,包括BIM技术在三维施工场地布置、施工安全管理、建筑智能化交付、运维管理、施工机械及材料安全管理中的应用,期望为推动建筑行业的数字化转型提供理论支持和实践指导。
文摘本研究旨在利用建筑信息模型(Building Information Modeling,BIM)的技术优势实现从项目规划、设计、施工到运营和维护阶段的成本管理,首先详细论述BIM技术在工程项目全生命周期成本管理中的应用,然后阐述基于BIM技术的工程项目全生命周期成本管理模式的构建路径。基于BIM技术的工程项目全生命周期成本管理模式通过建立统一的数据标准和模型集成,设计基于BIM的工作流程和信息交换机制,开发成本模型和风险评估模型,实现全面的成本控制和风险管理。这种模式的研究有助于增强成本预测的准确性和可靠性,优化项目的资源利用和决策制定,最终实现工程项目的成功交付和可持续发展。