Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio...Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.展开更多
With the full growth of energy needs in the world, several studies are now focused on finding renewable sources. The aim of this work is to optimise biofuel formulation from a mixture design by studying physical prope...With the full growth of energy needs in the world, several studies are now focused on finding renewable sources. The aim of this work is to optimise biofuel formulation from a mixture design by studying physical properties, such as specific gravity and kinematic viscosity of various formulated mixtures. Optimization from the mixture plan revealed that in the chosen experimental domain, the optimal conditions are: 40% for used frying oil (UFO), 50% for bioethanol and 10% for diesel. These experimental conditions lead to a biofuel with a density of 0.84 and a kinematic viscosity of 2.97 cSt. These parameters are compliant with the diesel quality certificate in tropical areas. These density and viscosity values were determined according to respective desirability values of 0.68 and 0.75.展开更多
Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in ...Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in biofuels production infrastructure. Concerns over the environmental impacts of large-scale biofuels production combined with tariff barriers have greatly restricted the global trade in biofuels. First-generation biofuels produced either by fermentation of sugars from maize or sugarcane (ethanol) or transesterification of triglycerides (biodiesel) presently contribute less than 4% of terrestrial transportation fuel demand and techno-economic modelling foresees this only slowly increasing by 2035. With internal combustion and diesel engines widely anticipated as being phased out in favour of electric power for motor vehicles, a much-reduced market demand for biofuels is likely if global demand for all liquid fuels declines by 2050. However, second-generation, thermochemically produced and biomass-derived fuels (renewable diesel, marine oils and sustainable aviation fuel) have much higher blend limits;combined with policies to decarbonise the aviation and marine industries, major new markets for these products in terrestrial, marine and aviation sectors may emerge in the second half of the 21st century.展开更多
The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-range...The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.展开更多
Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. T...Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. The effects of theblends on engine performance were assessed under various thrust output settings with respect to the thrust, thrust-specificfuel consumption, emission characteristics, exhaust gas temperature, acceleration and deceleration performance. Blendingwith catalytic hydrothermolysis jet (CHJ) fuel improved the combustion efficiency by reducing carbon monoxide andunburned hydrocarbon emissions and markedly reducing PM2.5 emissions. However, a slight reduction in thrust output wasobserved. Throughout the entire range of thrust output settings, the 10% CHJ fuel blend provided higher thrust, lower thrustspecificfuel consumption, and lower exhaust gas temperature. The CHJ fuel blends exhibited no significant effects on thedeceleration performance, while the 5% and 15% blends caused a 0.4 s delay in the time required for complete acceleration.Global sensitivity analysis was conducted to better understand the effects of the fuel blends on engine performance andemission characteristics. This analysis identified the critical parameters of engine performance as engine-influence and fuelinfluenceparameters and engine-influence and fuel-less influence parameters. The overall engine efficiency benefit was nonlinearlyrelated to the blend ratio and thrust output. The results indicate that the use of CHJ fuel blends can improve engineefficiency if they comply with the engine design and control regulations.展开更多
Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasi- fication was performed over Fel.5CulZnlAllK0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59...Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasi- fication was performed over Fel.5CulZnlAllK0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcat·rh) with a contribution of 0.57 kg alcohols/(kgcat·rh) and 1.02 kg liquid hydrocarbons/(kgcat·rh). The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2-C6 alcohols) with a content of 73.55%-89.98%. The selectivity .of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%. The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg. The effects of the synthesis conditions, including temperature, pressure, and gas hourly space velocity, on the biofuel synthesis were investigated in detail. The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, and the N2 adsorption-desorption isotherms measurements. The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.展开更多
The rapid increase in energy demand,the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector.Alternate renewable and sustainable so...The rapid increase in energy demand,the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector.Alternate renewable and sustainable sources have become the ultimate solution to overcome the expected depletion of fossil fuels.The conversion of lignocellulosic biomass to liquid(BtL)transportation fuels seems to be a promising path and presents advantages over first generation biofuels and fossil fuels.Therefore,development of BtL systems is critical to increase the potential of this resource in a sustainable and economic way.Conversion of lignocellulosic BtL transportation fuels,such as,gasoline,diesel and jet fuel can be accomplished through various thermochemical processes and processing routes.The major steps for the production of BtL fuels involve feedstock selection,physical pretreatment,production of bio-oil,upgrading of bio-oil to transportation fuels and recovery of value-added products.The present work is aiming to give a comprehensive review of the current process technologies following these major steps and the current scenarios of biomass to liquid facilities for the production of biofuels.展开更多
The rise in global population has led to explorations of alternative sources of energy and food. Because corn and soybean are staple food crops for humans, their common use as the main source of dietary energy and pro...The rise in global population has led to explorations of alternative sources of energy and food. Because corn and soybean are staple food crops for humans, their common use as the main source of dietary energy and protein for food-producing animals directly competes with their allocation for human consumption. Alternatively, de-fatted marine microalgal biomass generated from the potential biofuel production may be a viable replacement of corn and soybean meal due to their high levels of protein, relatively well-balanced amino acid profiles, and rich contents of minerals and vitamins, along with unique bioactive compounds. Although the full-fatted (intact) microalgae represent the main source of omega-3 (n-3) polyunsaturated fatty acids including docohexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the de-fatted microalgal biomass may still contain good amounts of these components for enriching DHA/EPA in eggs, meats, and milk. This review is written to highlight the necessity and potential of using the de-fatted microalgal biomass as a new generation of animal feed in helping address the globa energy, food, and environmental issues. Nutritional feasibility and limitation of the biomass as the new feed ingredient for simple-stomached species are elaborated. Potential applications of the biomass for generating value-added animal products are also explored.展开更多
Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology ha...Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology has been considered to be an environmentally-benign treatment. Therefore, its technology was applied for a conversion of biomass to useful fuels and chemicals in order to mitigate environmental loading. For example, supercritical water treatment has demonstrated that lignocellulosics can be hydrolyzed to become lignin-derived products for useful aromatic chemicals and carbohydrate-derived products, such as polysaccharides, oligosaccharides and monosaccharides of glucose, mannose and xylose used for subsequent ethanol fermentation. If this treatment is prolonged, lignocellulosics were found to be converted to organic acids such as formic, acetic, glycolic and lactic acids which can be converted to methane for biofuel. When alcohols, such as methanol and ethanol, were used instead of water, some other useful products were achieved, and its liquefied products were found to have a potential for liquid biofuel. In this study, therefore, our research achievements in supercritical fluid science of woody biomass will be introduced for clean and green chemistry for a sustainable environment.展开更多
Contamination of agricultural soil has been a worldwide concern, and phytoremediation is a promising alternative to conventional soil clean-up technology as a low cost and environment-friendly technology. However, the...Contamination of agricultural soil has been a worldwide concern, and phytoremediation is a promising alternative to conventional soil clean-up technology as a low cost and environment-friendly technology. However, the field application of phytoremediation is still limited, because of its low efficiency and long-period needed. In this paper, with discussion of the characteristics, mechanisms and development of phytoremediation, we suggested a profitable phytoremediation strategy using biofuel crops for both utilization and remediation of contaminated soil. In this strategy, the owners of contaminated sites possibly cost nothing, but obtain income through selling the biofuel crop for factories produced biofuel, thus the practical application of phytoremediation can be effectively promoted. In order to test the feasibility of the suggested strategy, a hydroponic cultural experiment and a pot experiment were carried out to assess the phytoremediation potential of some biofuel crops. The hydroponic cultural experiment showed that the two biofuel plants, sunflower and maize, had a better or similar accumulation level of Pb, Cu and Cd than the two accumulator plants. The pot cultural experiment showed that wheat and barley with white-rot-fungus inoculation greatly promoted crop biomass, soil microbial population, and dioxins removal efficiency. These results indicate that phytoremediation using biofuel plants possibly works effectively for remediation of contaminated soils as well as provide economic benefits to the owners of contaminated sites. Therefore, biofuel crops would be a reasonable choice for phytoremediation of contaminated soils.展开更多
Phytoremediation is an eco-friendly and low-cost biotechnology using plants to extract, contain, degrade, or immobilize pollutants from the contaminated environment. Selection of the ideal plant species and suitable e...Phytoremediation is an eco-friendly and low-cost biotechnology using plants to extract, contain, degrade, or immobilize pollutants from the contaminated environment. Selection of the ideal plant species and suitable enhancing measures to obtain high remediation efficiency and large valuable biomass are essential requirement for a successful phytoremdaition. Sorghum (Sorghum bicolor L.) is one of the most attractive bioenergy crops for producing biofuels with high biomass production. In this study, the phytoremediation potential of sorghum to heavy metals and the promotion effects by a lead-tolerant fungus (LTF) were investigated using a multiple heavy metal contaminated soil with Pb, Ni, and Cu. The results showed that the sorghum survived the heavy contamination, and LTF inoculation promoted the plant growth and increased the phytoextraction yields of Pb, Ni, and Cu. The phytoextraction potential (μg/plant) of the whole sorghum for Sorghum were 410 (Pb), 74 (Ni), and 73 (Cu), and for Sorghum with LTF inoculation were 590 (Pb), 120 (Ni), and 93 (Cu), respectively. The results suggested that sorghum would be one of the ideal candidates for phytoremediation of contaminated soil because of its high phytoremediation potential, large biomass production, and utilization in biofuel production.展开更多
Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental...Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental concerns, and financial problems over some of crops. Genetic engineering of forest trees can be used to reduce the level of lignin, to produce the fast-growing trees, to develop trees with higher cellulose, and to allow the trees to be grown more widely. Trees can establish themselves in the field with less care of farmers, compared to most of crops. Transgenic crops as a new source for biofuel have been recently reviewed in several reviews. Here, we overview transgenic woody plants as a new source for biofuel including genetically modified woody plants and environment; main focus of woody plants genetic modifications; solar to chemical energy transfer; cellulose biosynthesis; lignin biosynthesis; and cellulosic ethanol as biofuel.展开更多
In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to inv...In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to investigate the potentialities of biofuels to overcome the CO2 emission problems deriving from fossil fuel processing. The performances of a nickel based catalyst (commercially used in steam reforming of natural gas) were evaluated in terms of feed conversion and yield to the different products as function of temperature, space velocity and water/fuel ratio. Furthermore, a preliminary evaluation of catalyst durability was effected by monitoring yield to H2 versus time on stream and measuring coke formation at the end of experimental tests. High yields to hydrogen were obtained with all fuels investigated, whereas the deactivation phenomena, which are correlated to carbon deposition on the catalyst, were observed with all tested fuels, except for methane and biofuel.展开更多
Zeolite-supported metal catalysts containing hydrogenation centers and acid sites are promising in the chemoselective hydrogenation of biomass platform molecules into value-added chemicals and fuels.The primary challe...Zeolite-supported metal catalysts containing hydrogenation centers and acid sites are promising in the chemoselective hydrogenation of biomass platform molecules into value-added chemicals and fuels.The primary challenge of employing such bifunctional catalysts for biomass conversion lies in catalyst stability in the liquid phase under harsh conditions. Herein, we have prepared a Ni/La-Y nanocatalyst via an improved wet impregnation method. Compared with Ni nanoparticles on H-Y, La addition shows a significantly enhanced stability and performance in the continuous liquid-phase hydrogenation of γ-valerolactone(GVL) into ethyl pentanoate(EP) at 200 ℃ for 1000 h. Complementary characterization studies reveal that La addition in the metal/zeolite catalyst not only efficiently modulates the acid property of the zeolite to alleviate coke formation, but also suppresses zeolite dealumination and metal agglomeration and leaching upon catalysis over a 1000 h period. These findings provide an efficient approach for improving the stability of zeolite-supported bifunctional catalysts, leading to potential application in hydrogen-assisted biomass valorization under the liquid-phase conditions.展开更多
Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been d...Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been developed for the production of high-density tricyclic hydrocarbon biofuels from a monoterpenoid,1,8-cineole,using sulfuric acid(H2SO4)as the homogeneous catalyst.A^100%conversion of 1,8-cineole and a>40%carbon yield of cyclic dimers were achieved at 100℃within two hours.The mechanism for the acid-catalyzed conversion of 1,8-cineole to cyclic hydrocarbon dimers were explored.In particular,the formation of the diene intermediates and the following dimerization of dienes was essential to synthesize tricyclic terpene dimers.The biphasic catalytic process accelerated the deoxygenation rate and enabled the dimerization with the aid of organic solvent while controlling the reaction rates to avoid the formation of solid residues.Moreover,this process also facilitated the product separation by organic solvent extraction while enabling easy recycle of the homogenous catalysts.展开更多
In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,...In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.展开更多
Metatranscriptomics—gene express profiling via DNA sequencing—is a powerful tool to identify genes that are actively expressed and might contribute to the phenotype of individual organisms or the phenome (the sum of...Metatranscriptomics—gene express profiling via DNA sequencing—is a powerful tool to identify genes that are actively expressed and might contribute to the phenotype of individual organisms or the phenome (the sum of several phenotypes) of a microbial community. Furthermore, metatranscriptome studies can result in extensive catalogues of genes that encode for enzymes of industrial relevance. In both cases, a major challenge for generating a high quality metatranscriptome is the extreme lability of RNA and its susceptibility to ubiquitous RNAses. The microbial community (the microbiome) of the cow rumen efficiently degrades lignocelullosic biomass, generates significant amounts of methane, a greenhouse gas twenty times more potent than carbon dioxide, and is of general importance for the physiological wellbeing of the host animal. Metatranscriptomes of the rumen microbiome from animals kept under different conditions and from various types of rumen-incubated biomass can be expected to provide new insights into these highly interesting phenotypes and subsequently provide the framework for an enhanced understanding of this socioeconomically important ecosystem. The ability to isolate large amounts of intact RNA will significantly facilitate accurate transcript annotation and expression profiling. Here we report a method that combines mechanical disruption with chemical homogenization of the sample material and consistently yields 1 mg of intact RNA from 1 g of rumen-incubated biofuel feedstock. The yield of total RNA obtained with our method exceeds the RNA yield achieved with previously reported isolation techniques, which renders RNA isolated with the method presented here as an ideal starting material for metatranscriptomic analyses and other molecular biology applications that require significant amounts of starting material.展开更多
The growing demand for energy and the negative environmental impacts of fossil fuel use are triggering global searches for a renewable and eco-friendly alternative biofuel. Microalgae are considered as one of the most...The growing demand for energy and the negative environmental impacts of fossil fuel use are triggering global searches for a renewable and eco-friendly alternative biofuel. Microalgae are considered as one of the most promising feedstocks for biofuel production, due to many advantages including cultivation </span><span><span style="font-family:Verdana;">in non-arable land and being able to grow in wastewater or seawater. That is why;microalgae-based biofuels are regarded as one of the best candidates to replace fossil fuels. There are two main types of microalgae cultivation systems: Open Raceway Ponds and Closed </span><span style="font-family:Verdana;">Photobioreactos</span><span style="font-family:Verdana;"> (PBRs). Due to some limitations in Open Raceways, PBRs have become the most favorable choice for biofuel producers, ev</span></span><span style="font-family:Verdana;">en though it is costly. To make the process viable, the growth of microalgae for biofuel production should be </span><span style="font-family:Verdana;">cost</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">effective</span><span style="font-family:""><span style="font-family:Verdana;">. One way to achieve this goal is to optimize the environmental factors that influence their growth during the cultivation stage to increase the accumulation of bio-compounds of fuel. Algal growth relies mostly on nutrients, CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> concentration, pH and salinity, light intensity and quality, temperature </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> finally mixing, which directly affects all other factors. Thus, before designing PBR, a thorough study </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> these growth parameters is needed. In the present </span><span style="font-family:Verdana;">study</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> we reviewed and evaluated these growth influencing factors in an extensive way to optimize biofuel production.展开更多
The effect of ethanedioic acid(Ed A) functionalization on Al2O3 supported Ni catalyst was studied on the hydrodeoxygenation(HDO), isomerization, kinetics and Arrhenius parameters of octadec-9-enoic acid(OA) into...The effect of ethanedioic acid(Ed A) functionalization on Al2O3 supported Ni catalyst was studied on the hydrodeoxygenation(HDO), isomerization, kinetics and Arrhenius parameters of octadec-9-enoic acid(OA) into biofuel in this report. This was achieved via synthesis of two catalysts; the first, nickel alumina catalyst(Ni/Al2O3) was via the incorporation of inorganic Ni precursor into Al2O3; the second was via the incorporation nickel oxalate(Ni Ox) prepared by functionalization of Ni with Ed A into Al2O3 to obtain organometallic Ni Ox/Al2O3 catalyst. Their characterization results showed that Ni species present in Ni/Al2O3 and Ni Ox/Al2O3 were 8.2% and 9.3%, respectively according to the energy dispersive X-ray result. Ni Ox/Al2O3 has comparably higher Ni content due to the Ed A functionalization which also increases its acidity and guarantees high Ni dispersion with weaker metal-support-interaction leading to highly reducible Ni as seen in the X-ray diffraction, X-ray photoelectron spectroscopy, TPR and Raman spectroscopy results. Their activities tested on the HDO of OA showed that Ni Ox/Al2O3 did not only display the best catalytic and reusability abilities, but it also possesses isomerization ability due to its increased acidity. The Ni Ox/Al2O3 also has the highest rate constants evaluated using pseudo-first-order kinetics,but the least activation energy of 176 k J/mol in the biofuel formation step compared to 244 k J/mol evaluated when using Ni/Al2O3. The result is promising for future feasibility studies toward commercialization of catalytic HDO of OA into useful biofuel using organometallic catalysts.展开更多
An endophytic fungus producing 1,8-cineole from Neolitsea pulchella (Meissn.) Merr. was identified as Annulohypoxylon sp. by phylogenetic analyses of the sequence alignments of ITS rDNA, β-tubulin, Actin and EF1-α. ...An endophytic fungus producing 1,8-cineole from Neolitsea pulchella (Meissn.) Merr. was identified as Annulohypoxylon sp. by phylogenetic analyses of the sequence alignments of ITS rDNA, β-tubulin, Actin and EF1-α. This isolate produces an attractive spectrum of volatile organic compounds (VOCs) with only one dominant component, 1,8-cineole, as identified by gas chromatography-mass spectrometry (GC-MS). The fungus was able to grow in seven media with different carbon sources, and five raw agro-forest residues. The content of 1,8-cineole in the mixed VOCs via fungus reached up to 94.95% and 91.25% relative area in PDA and raw poplar sawdust, respectively. Under optimum test conditions, the fungus produced 1,8-cineole at the 0.764 ppmv in 50 mL head spaces in PDA. Interestingly, 1,8-cineole is an ideal fuel additive for both diesel and gasoline engines. Also, this is the first isolate, in this group of fungi, making cineole, which produces as its primary VOC product which makes it an ideal organism for strain improvement. Such as step will be critical for its ultimate use in biofuel production.展开更多
基金supported by the National Natural Science Foundation of China (22288101,21991090,21991091,22078316,22272171 and 22109167)the Sino-French International Research Network (Zeolites)+2 种基金the BL01B1 beamline of SPring-8 and the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF)for the support of XAS measurementsthe Division of Energy Research Resources of Dalian Institute of Chemical Physics for the support of iDPC-STEM measurementsthe support of the Alexander von Humboldt Foundation (CHN 1220532 HFST-P)。
文摘Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.
文摘With the full growth of energy needs in the world, several studies are now focused on finding renewable sources. The aim of this work is to optimise biofuel formulation from a mixture design by studying physical properties, such as specific gravity and kinematic viscosity of various formulated mixtures. Optimization from the mixture plan revealed that in the chosen experimental domain, the optimal conditions are: 40% for used frying oil (UFO), 50% for bioethanol and 10% for diesel. These experimental conditions lead to a biofuel with a density of 0.84 and a kinematic viscosity of 2.97 cSt. These parameters are compliant with the diesel quality certificate in tropical areas. These density and viscosity values were determined according to respective desirability values of 0.68 and 0.75.
文摘Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in biofuels production infrastructure. Concerns over the environmental impacts of large-scale biofuels production combined with tariff barriers have greatly restricted the global trade in biofuels. First-generation biofuels produced either by fermentation of sugars from maize or sugarcane (ethanol) or transesterification of triglycerides (biodiesel) presently contribute less than 4% of terrestrial transportation fuel demand and techno-economic modelling foresees this only slowly increasing by 2035. With internal combustion and diesel engines widely anticipated as being phased out in favour of electric power for motor vehicles, a much-reduced market demand for biofuels is likely if global demand for all liquid fuels declines by 2050. However, second-generation, thermochemically produced and biomass-derived fuels (renewable diesel, marine oils and sustainable aviation fuel) have much higher blend limits;combined with policies to decarbonise the aviation and marine industries, major new markets for these products in terrestrial, marine and aviation sectors may emerge in the second half of the 21st century.
基金financially supported by the National Natural Science Foundation of China (No.21536007)the 111 Project (B17030)+1 种基金support from China Scholarship Council (CSC No.202006240156)the Spanish Ministry of Science,Innovation and Universities for the Juan de la Cierva (JdC)fellowships (Grant Numbers FJCI-2016-30847 and IJC2018-037110-I)awarded.
文摘The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.
基金the National Key Research and Development Program of China(2018YFB1501505).
文摘Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. The effects of theblends on engine performance were assessed under various thrust output settings with respect to the thrust, thrust-specificfuel consumption, emission characteristics, exhaust gas temperature, acceleration and deceleration performance. Blendingwith catalytic hydrothermolysis jet (CHJ) fuel improved the combustion efficiency by reducing carbon monoxide andunburned hydrocarbon emissions and markedly reducing PM2.5 emissions. However, a slight reduction in thrust output wasobserved. Throughout the entire range of thrust output settings, the 10% CHJ fuel blend provided higher thrust, lower thrustspecificfuel consumption, and lower exhaust gas temperature. The CHJ fuel blends exhibited no significant effects on thedeceleration performance, while the 5% and 15% blends caused a 0.4 s delay in the time required for complete acceleration.Global sensitivity analysis was conducted to better understand the effects of the fuel blends on engine performance andemission characteristics. This analysis identified the critical parameters of engine performance as engine-influence and fuelinfluenceparameters and engine-influence and fuel-less influence parameters. The overall engine efficiency benefit was nonlinearlyrelated to the blend ratio and thrust output. The results indicate that the use of CHJ fuel blends can improve engineefficiency if they comply with the engine design and control regulations.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasi- fication was performed over Fel.5CulZnlAllK0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcat·rh) with a contribution of 0.57 kg alcohols/(kgcat·rh) and 1.02 kg liquid hydrocarbons/(kgcat·rh). The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2-C6 alcohols) with a content of 73.55%-89.98%. The selectivity .of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%. The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg. The effects of the synthesis conditions, including temperature, pressure, and gas hourly space velocity, on the biofuel synthesis were investigated in detail. The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, and the N2 adsorption-desorption isotherms measurements. The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.
基金financial support from CONACYT-The Mexican National Council for Science and Technology (REFERENCE: 326204/439098)the University of Southern Denmark
文摘The rapid increase in energy demand,the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector.Alternate renewable and sustainable sources have become the ultimate solution to overcome the expected depletion of fossil fuels.The conversion of lignocellulosic biomass to liquid(BtL)transportation fuels seems to be a promising path and presents advantages over first generation biofuels and fossil fuels.Therefore,development of BtL systems is critical to increase the potential of this resource in a sustainable and economic way.Conversion of lignocellulosic BtL transportation fuels,such as,gasoline,diesel and jet fuel can be accomplished through various thermochemical processes and processing routes.The major steps for the production of BtL fuels involve feedstock selection,physical pretreatment,production of bio-oil,upgrading of bio-oil to transportation fuels and recovery of value-added products.The present work is aiming to give a comprehensive review of the current process technologies following these major steps and the current scenarios of biomass to liquid facilities for the production of biofuels.
基金supported in part by a USDA/DOE Biomass R&D Initiative grant
文摘The rise in global population has led to explorations of alternative sources of energy and food. Because corn and soybean are staple food crops for humans, their common use as the main source of dietary energy and protein for food-producing animals directly competes with their allocation for human consumption. Alternatively, de-fatted marine microalgal biomass generated from the potential biofuel production may be a viable replacement of corn and soybean meal due to their high levels of protein, relatively well-balanced amino acid profiles, and rich contents of minerals and vitamins, along with unique bioactive compounds. Although the full-fatted (intact) microalgae represent the main source of omega-3 (n-3) polyunsaturated fatty acids including docohexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the de-fatted microalgal biomass may still contain good amounts of these components for enriching DHA/EPA in eggs, meats, and milk. This review is written to highlight the necessity and potential of using the de-fatted microalgal biomass as a new generation of animal feed in helping address the globa energy, food, and environmental issues. Nutritional feasibility and limitation of the biomass as the new feed ingredient for simple-stomached species are elaborated. Potential applications of the biomass for generating value-added animal products are also explored.
文摘Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology has been considered to be an environmentally-benign treatment. Therefore, its technology was applied for a conversion of biomass to useful fuels and chemicals in order to mitigate environmental loading. For example, supercritical water treatment has demonstrated that lignocellulosics can be hydrolyzed to become lignin-derived products for useful aromatic chemicals and carbohydrate-derived products, such as polysaccharides, oligosaccharides and monosaccharides of glucose, mannose and xylose used for subsequent ethanol fermentation. If this treatment is prolonged, lignocellulosics were found to be converted to organic acids such as formic, acetic, glycolic and lactic acids which can be converted to methane for biofuel. When alcohols, such as methanol and ethanol, were used instead of water, some other useful products were achieved, and its liquefied products were found to have a potential for liquid biofuel. In this study, therefore, our research achievements in supercritical fluid science of woody biomass will be introduced for clean and green chemistry for a sustainable environment.
文摘Contamination of agricultural soil has been a worldwide concern, and phytoremediation is a promising alternative to conventional soil clean-up technology as a low cost and environment-friendly technology. However, the field application of phytoremediation is still limited, because of its low efficiency and long-period needed. In this paper, with discussion of the characteristics, mechanisms and development of phytoremediation, we suggested a profitable phytoremediation strategy using biofuel crops for both utilization and remediation of contaminated soil. In this strategy, the owners of contaminated sites possibly cost nothing, but obtain income through selling the biofuel crop for factories produced biofuel, thus the practical application of phytoremediation can be effectively promoted. In order to test the feasibility of the suggested strategy, a hydroponic cultural experiment and a pot experiment were carried out to assess the phytoremediation potential of some biofuel crops. The hydroponic cultural experiment showed that the two biofuel plants, sunflower and maize, had a better or similar accumulation level of Pb, Cu and Cd than the two accumulator plants. The pot cultural experiment showed that wheat and barley with white-rot-fungus inoculation greatly promoted crop biomass, soil microbial population, and dioxins removal efficiency. These results indicate that phytoremediation using biofuel plants possibly works effectively for remediation of contaminated soils as well as provide economic benefits to the owners of contaminated sites. Therefore, biofuel crops would be a reasonable choice for phytoremediation of contaminated soils.
文摘Phytoremediation is an eco-friendly and low-cost biotechnology using plants to extract, contain, degrade, or immobilize pollutants from the contaminated environment. Selection of the ideal plant species and suitable enhancing measures to obtain high remediation efficiency and large valuable biomass are essential requirement for a successful phytoremdaition. Sorghum (Sorghum bicolor L.) is one of the most attractive bioenergy crops for producing biofuels with high biomass production. In this study, the phytoremediation potential of sorghum to heavy metals and the promotion effects by a lead-tolerant fungus (LTF) were investigated using a multiple heavy metal contaminated soil with Pb, Ni, and Cu. The results showed that the sorghum survived the heavy contamination, and LTF inoculation promoted the plant growth and increased the phytoextraction yields of Pb, Ni, and Cu. The phytoextraction potential (μg/plant) of the whole sorghum for Sorghum were 410 (Pb), 74 (Ni), and 73 (Cu), and for Sorghum with LTF inoculation were 590 (Pb), 120 (Ni), and 93 (Cu), respectively. The results suggested that sorghum would be one of the ideal candidates for phytoremediation of contaminated soil because of its high phytoremediation potential, large biomass production, and utilization in biofuel production.
基金supported by the East Carolina Christmas Tree Program
文摘Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental concerns, and financial problems over some of crops. Genetic engineering of forest trees can be used to reduce the level of lignin, to produce the fast-growing trees, to develop trees with higher cellulose, and to allow the trees to be grown more widely. Trees can establish themselves in the field with less care of farmers, compared to most of crops. Transgenic crops as a new source for biofuel have been recently reviewed in several reviews. Here, we overview transgenic woody plants as a new source for biofuel including genetically modified woody plants and environment; main focus of woody plants genetic modifications; solar to chemical energy transfer; cellulose biosynthesis; lignin biosynthesis; and cellulosic ethanol as biofuel.
文摘In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to investigate the potentialities of biofuels to overcome the CO2 emission problems deriving from fossil fuel processing. The performances of a nickel based catalyst (commercially used in steam reforming of natural gas) were evaluated in terms of feed conversion and yield to the different products as function of temperature, space velocity and water/fuel ratio. Furthermore, a preliminary evaluation of catalyst durability was effected by monitoring yield to H2 versus time on stream and measuring coke formation at the end of experimental tests. High yields to hydrogen were obtained with all fuels investigated, whereas the deactivation phenomena, which are correlated to carbon deposition on the catalyst, were observed with all tested fuels, except for methane and biofuel.
基金The National Key R&D Program of China(2018YFB1501602)the National Natural Science Foundation of China(21721004 and 22078316)are acknowledged for financial support。
文摘Zeolite-supported metal catalysts containing hydrogenation centers and acid sites are promising in the chemoselective hydrogenation of biomass platform molecules into value-added chemicals and fuels.The primary challenge of employing such bifunctional catalysts for biomass conversion lies in catalyst stability in the liquid phase under harsh conditions. Herein, we have prepared a Ni/La-Y nanocatalyst via an improved wet impregnation method. Compared with Ni nanoparticles on H-Y, La addition shows a significantly enhanced stability and performance in the continuous liquid-phase hydrogenation of γ-valerolactone(GVL) into ethyl pentanoate(EP) at 200 ℃ for 1000 h. Complementary characterization studies reveal that La addition in the metal/zeolite catalyst not only efficiently modulates the acid property of the zeolite to alleviate coke formation, but also suppresses zeolite dealumination and metal agglomeration and leaching upon catalysis over a 1000 h period. These findings provide an efficient approach for improving the stability of zeolite-supported bifunctional catalysts, leading to potential application in hydrogen-assisted biomass valorization under the liquid-phase conditions.
文摘Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been developed for the production of high-density tricyclic hydrocarbon biofuels from a monoterpenoid,1,8-cineole,using sulfuric acid(H2SO4)as the homogeneous catalyst.A^100%conversion of 1,8-cineole and a>40%carbon yield of cyclic dimers were achieved at 100℃within two hours.The mechanism for the acid-catalyzed conversion of 1,8-cineole to cyclic hydrocarbon dimers were explored.In particular,the formation of the diene intermediates and the following dimerization of dienes was essential to synthesize tricyclic terpene dimers.The biphasic catalytic process accelerated the deoxygenation rate and enabled the dimerization with the aid of organic solvent while controlling the reaction rates to avoid the formation of solid residues.Moreover,this process also facilitated the product separation by organic solvent extraction while enabling easy recycle of the homogenous catalysts.
基金The paper was supported by the Natural Science Foundation of China(No.51906112)Natural Science Foundation of Jiangsu Province(No.BK20180548)+1 种基金China Postdoctoral Science Foundation(2019M651852)“Innovation&Entrepreneurship Talents”Introduction Plan of Jiangsu Province.
文摘In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.
文摘Metatranscriptomics—gene express profiling via DNA sequencing—is a powerful tool to identify genes that are actively expressed and might contribute to the phenotype of individual organisms or the phenome (the sum of several phenotypes) of a microbial community. Furthermore, metatranscriptome studies can result in extensive catalogues of genes that encode for enzymes of industrial relevance. In both cases, a major challenge for generating a high quality metatranscriptome is the extreme lability of RNA and its susceptibility to ubiquitous RNAses. The microbial community (the microbiome) of the cow rumen efficiently degrades lignocelullosic biomass, generates significant amounts of methane, a greenhouse gas twenty times more potent than carbon dioxide, and is of general importance for the physiological wellbeing of the host animal. Metatranscriptomes of the rumen microbiome from animals kept under different conditions and from various types of rumen-incubated biomass can be expected to provide new insights into these highly interesting phenotypes and subsequently provide the framework for an enhanced understanding of this socioeconomically important ecosystem. The ability to isolate large amounts of intact RNA will significantly facilitate accurate transcript annotation and expression profiling. Here we report a method that combines mechanical disruption with chemical homogenization of the sample material and consistently yields 1 mg of intact RNA from 1 g of rumen-incubated biofuel feedstock. The yield of total RNA obtained with our method exceeds the RNA yield achieved with previously reported isolation techniques, which renders RNA isolated with the method presented here as an ideal starting material for metatranscriptomic analyses and other molecular biology applications that require significant amounts of starting material.
文摘The growing demand for energy and the negative environmental impacts of fossil fuel use are triggering global searches for a renewable and eco-friendly alternative biofuel. Microalgae are considered as one of the most promising feedstocks for biofuel production, due to many advantages including cultivation </span><span><span style="font-family:Verdana;">in non-arable land and being able to grow in wastewater or seawater. That is why;microalgae-based biofuels are regarded as one of the best candidates to replace fossil fuels. There are two main types of microalgae cultivation systems: Open Raceway Ponds and Closed </span><span style="font-family:Verdana;">Photobioreactos</span><span style="font-family:Verdana;"> (PBRs). Due to some limitations in Open Raceways, PBRs have become the most favorable choice for biofuel producers, ev</span></span><span style="font-family:Verdana;">en though it is costly. To make the process viable, the growth of microalgae for biofuel production should be </span><span style="font-family:Verdana;">cost</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">effective</span><span style="font-family:""><span style="font-family:Verdana;">. One way to achieve this goal is to optimize the environmental factors that influence their growth during the cultivation stage to increase the accumulation of bio-compounds of fuel. Algal growth relies mostly on nutrients, CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> concentration, pH and salinity, light intensity and quality, temperature </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> finally mixing, which directly affects all other factors. Thus, before designing PBR, a thorough study </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> these growth parameters is needed. In the present </span><span style="font-family:Verdana;">study</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> we reviewed and evaluated these growth influencing factors in an extensive way to optimize biofuel production.
基金financial support from Higher Impact Research-Ministry of Higher Education project no D000011-16001 of the Faculty of Engineering,University of Malaya,Malaysia and the Mitsubishi Corporation Education Trust Fund,University Teknologi PETRONAS,Malaysia
文摘The effect of ethanedioic acid(Ed A) functionalization on Al2O3 supported Ni catalyst was studied on the hydrodeoxygenation(HDO), isomerization, kinetics and Arrhenius parameters of octadec-9-enoic acid(OA) into biofuel in this report. This was achieved via synthesis of two catalysts; the first, nickel alumina catalyst(Ni/Al2O3) was via the incorporation of inorganic Ni precursor into Al2O3; the second was via the incorporation nickel oxalate(Ni Ox) prepared by functionalization of Ni with Ed A into Al2O3 to obtain organometallic Ni Ox/Al2O3 catalyst. Their characterization results showed that Ni species present in Ni/Al2O3 and Ni Ox/Al2O3 were 8.2% and 9.3%, respectively according to the energy dispersive X-ray result. Ni Ox/Al2O3 has comparably higher Ni content due to the Ed A functionalization which also increases its acidity and guarantees high Ni dispersion with weaker metal-support-interaction leading to highly reducible Ni as seen in the X-ray diffraction, X-ray photoelectron spectroscopy, TPR and Raman spectroscopy results. Their activities tested on the HDO of OA showed that Ni Ox/Al2O3 did not only display the best catalytic and reusability abilities, but it also possesses isomerization ability due to its increased acidity. The Ni Ox/Al2O3 also has the highest rate constants evaluated using pseudo-first-order kinetics,but the least activation energy of 176 k J/mol in the biofuel formation step compared to 244 k J/mol evaluated when using Ni/Al2O3. The result is promising for future feasibility studies toward commercialization of catalytic HDO of OA into useful biofuel using organometallic catalysts.
文摘An endophytic fungus producing 1,8-cineole from Neolitsea pulchella (Meissn.) Merr. was identified as Annulohypoxylon sp. by phylogenetic analyses of the sequence alignments of ITS rDNA, β-tubulin, Actin and EF1-α. This isolate produces an attractive spectrum of volatile organic compounds (VOCs) with only one dominant component, 1,8-cineole, as identified by gas chromatography-mass spectrometry (GC-MS). The fungus was able to grow in seven media with different carbon sources, and five raw agro-forest residues. The content of 1,8-cineole in the mixed VOCs via fungus reached up to 94.95% and 91.25% relative area in PDA and raw poplar sawdust, respectively. Under optimum test conditions, the fungus produced 1,8-cineole at the 0.764 ppmv in 50 mL head spaces in PDA. Interestingly, 1,8-cineole is an ideal fuel additive for both diesel and gasoline engines. Also, this is the first isolate, in this group of fungi, making cineole, which produces as its primary VOC product which makes it an ideal organism for strain improvement. Such as step will be critical for its ultimate use in biofuel production.