This investigation deals with the effects of slip, magnetic field, and non- Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite por...This investigation deals with the effects of slip, magnetic field, and non- Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.展开更多
In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the B...In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two cases are obtained by using these methods and their results are shown in table.展开更多
In this paper mathematical techniques have been used for the solution of Blasius differential equation. The method uses optimized artificial neural networks approximation with Sequential Quadratic Programming algorith...In this paper mathematical techniques have been used for the solution of Blasius differential equation. The method uses optimized artificial neural networks approximation with Sequential Quadratic Programming algorithm and hybrid AST-INP techniques. Numerical treatment of this problem reported in the literature is based on Shooting and Finite Differences Method, while our mathematical approach is very simple. Numerical testing showed that solutions obtained by using the proposed methods are better in accuracy than those reported in literature. Statistical analysis provided the convergence of the proposed model.展开更多
In the present research,Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction.The PDEs are converted into ordinary differential equat...In the present research,Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction.The PDEs are converted into ordinary differential equations(ODEs)using the similarity method.The obtained ordinary differential equations are solved numerically using shooting method along with RK-4.Part of the present study uses nanoparticles(NPs)like TiO_(2) andAl_(2)O_(3) and sodium carboxymethyl cellulose(CMC/water)is considered as a base fluid(BF).This study is conducted to find the influence of nanoparticles,Prandtl number,and magnetic field on velocity and temperature profile,however,the Nusselt number and coefficient of skin friction parameters are also presented in detail with the variation of nanoparticles and parameters.The obtained results of the present study are presented usingMATLAB.In addition to these,some simulations of partial differential equations are also shown using software for graphing surface plots of velocity profile and streamlines along with surface plots and isothermal contours of the temperature profile.展开更多
The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concen...The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows.展开更多
Momentum and energy laminar boundary layers of an incompressible fluid with thermal radiation about a moving plate in a quiescent ambient fluid are investigated numerically. Also, it has been underlined that the analy...Momentum and energy laminar boundary layers of an incompressible fluid with thermal radiation about a moving plate in a quiescent ambient fluid are investigated numerically. Also, it has been underlined that the analysis of the roles of both velocity and temperature gradient at infinity is of key relevance for our results.展开更多
文摘This investigation deals with the effects of slip, magnetic field, and non- Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.
文摘In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two cases are obtained by using these methods and their results are shown in table.
文摘In this paper mathematical techniques have been used for the solution of Blasius differential equation. The method uses optimized artificial neural networks approximation with Sequential Quadratic Programming algorithm and hybrid AST-INP techniques. Numerical treatment of this problem reported in the literature is based on Shooting and Finite Differences Method, while our mathematical approach is very simple. Numerical testing showed that solutions obtained by using the proposed methods are better in accuracy than those reported in literature. Statistical analysis provided the convergence of the proposed model.
基金The fifth author also thanks Prince Sultan University for funding this work through research-group number RG-DES2017-01-17.
文摘In the present research,Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction.The PDEs are converted into ordinary differential equations(ODEs)using the similarity method.The obtained ordinary differential equations are solved numerically using shooting method along with RK-4.Part of the present study uses nanoparticles(NPs)like TiO_(2) andAl_(2)O_(3) and sodium carboxymethyl cellulose(CMC/water)is considered as a base fluid(BF).This study is conducted to find the influence of nanoparticles,Prandtl number,and magnetic field on velocity and temperature profile,however,the Nusselt number and coefficient of skin friction parameters are also presented in detail with the variation of nanoparticles and parameters.The obtained results of the present study are presented usingMATLAB.In addition to these,some simulations of partial differential equations are also shown using software for graphing surface plots of velocity profile and streamlines along with surface plots and isothermal contours of the temperature profile.
基金Project supported by the National Natural Science Foundation ofChina (No. 10372090) and the Doctoral Program of Higher Educationof China (No. 20030335001)
文摘The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows.
文摘Momentum and energy laminar boundary layers of an incompressible fluid with thermal radiation about a moving plate in a quiescent ambient fluid are investigated numerically. Also, it has been underlined that the analysis of the roles of both velocity and temperature gradient at infinity is of key relevance for our results.