Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
Monitoring temporal changes in sea level is important in assessing coastal risk.Sea level anomalies at a tide gauge station,if kinematically conceived,include systematic variations such as trend,acceleration,periodic ...Monitoring temporal changes in sea level is important in assessing coastal risk.Sea level anomalies at a tide gauge station,if kinematically conceived,include systematic variations such as trend,acceleration,periodic oscillations,and random disturbances.Among them,the non-stationary nature of the random sea level variations of known or unknown origin at coastal regions has been long recognized by the sea level community.This study proposes the analyses of subgroups of random residual statistics of a rigorously formulated kinematic model solution of tide gauge variations using X-bar and S control charts.The approach is demonstrated using Key West,Florida tide gauge records.The mean and standard errors of 5-year-long subgroups of the residuals revealed that sea level changes at this location have been progressively intensifying from 1913 to the present.Increasing oscillations in sea level at this locality may be attributed partly to the thermal expansion of seawater with increasing temperatures causing larger buoyancy-related sea level fluctuations as well as the intensification of atmospheric events including wind patterns and the impact of changes in inverted barometer effects that will alter coastal risk assessments for the future.展开更多
This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor ...This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.展开更多
The Brushless DC Motor drive systems are used widely with renewable energy resources.The power converter controlling technique increases the performance by novel techniques and algorithms.Conventional approaches are m...The Brushless DC Motor drive systems are used widely with renewable energy resources.The power converter controlling technique increases the performance by novel techniques and algorithms.Conventional approaches are mostly focused on buck converter,Fuzzy logic control with various switching activity.In this proposed research work,the QPSO(Quantum Particle Swarm Optimization algorithm)is used on the switching state of converter from the generation unit of solar module.Through the duty cycle pulse from optimization function,the MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)of the Boost converter gets switched when BLDC(Brushless Direct Current Motor)motor drive system requires power.Voltage Source three phase inverter and Boost converter is controlled by proportional-integral(PI)controller.Based on the BLDC drive,the load utilized from the solar generating module.Experimental results analyzed every module of the proposed grid system,which are solar generation utilizes the irradiance and temperature depends on this the Photovoltaics(PV)power is generated and the QPSO with Duty cycle switching state is determined.The Boost converter module is boost stage based on generation and load is obtained.Single Ended Primary Inductor Converter(SEPIC)and Zeta converter model is compared with the proposed logic;the proposed boost converter achieves the results.Three phase inverter control,PI,and BLDC motor drive results.Thus the proposed grid model is constructed to obtain the better performance results than most recent literatures.Overall design model is done by using MATLAB/Simulink 2020a.展开更多
In order to solve the complex wiring and low reliability of conventional light control system,an automobile contactless switch light system is designed combined with Hall element and controller area network (CAN) bu...In order to solve the complex wiring and low reliability of conventional light control system,an automobile contactless switch light system is designed combined with Hall element and controller area network (CAN) bus technology.The processing system of electromagnetic compatibility controlled by CAN bus is improved to reduce the electromagnetic interference from the controller and other sources of interference.With Freescale's high-performance single-chip MC9S08DZ60 and CAN transceiver TJA1050,the overall circuit design and software design are presented.The test results show that the designed light control system is feasible.展开更多
In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with...In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
In recent years,there has been a critical change in treatment paradigms in inflammatory bowel diseases(IBD)triggered by the arrival of new effective treatments aiming to prevent disease progression,bowel damage and di...In recent years,there has been a critical change in treatment paradigms in inflammatory bowel diseases(IBD)triggered by the arrival of new effective treatments aiming to prevent disease progression,bowel damage and disability.The insufficiency of symptomatic disease control and the well-known discordance between symptoms and objective measures of disease activity lead to the need of reviewing conventional treatment algorithms and developing new concepts of optimal therapeutic strategy.The treat-to-target strategies,defined by the selecting therapeutic targets in inflammatory bowel disease consensus recommendation,move away from only symptomatic disease control and support targeting composite therapeutic endpoints(clinical and endoscopical remission)and timely assessment.Emerging data suggest that early therapy using a treat-to-target approach and an algorithmic therapy escalation using regular disease monitoring by clinical and biochemical markers(fecal calprotectin and C-reactive protein)leads to improved outcomes.This review aims to present the emerging strategies and supporting evidence in the current therapeutic paradigm of IBD including the concepts of“early intervention”,“treat-to-target”and“tight control”strategies.We also discuss the real-word experience and applicability of these new strategies and give an overview on the future perspectives and areas in need of further research and potential improvement regarding treatment targets and(“tight”)disease monitoring strategies.展开更多
Quantum system is inevitably affected by the external environment in the real world.Two controlled quantum dialogue protocols are put forward based on logicalχ-type states under collective noise environment.One is ag...Quantum system is inevitably affected by the external environment in the real world.Two controlled quantum dialogue protocols are put forward based on logicalχ-type states under collective noise environment.One is against collectivedephasing noise,while the other is against collective-rotation noise.Compared with existing protocols,there exist several outstanding advantages in our proposed protocols:Firstly,theχ-type state is utilized as quantum channels,it possesses better entanglement properties than GHZ state,W state as well as cluster state,which make it difficult to be destroyed by local operations.Secondly,two kinds of logicalχ-type states are constructed by us in theory,which can be perfectly immune to the effects of collective noise.Thirdly,the controller can be offline after quantum distribution and permission announcement,without waiting for all the participants to complete the information coding.Fourthly,the security analysis illuminates that our protocols can not only be free from the information leakage,but also resist against the interceptand-resend attack,the entanglement-and-measure attack,the modification attack,the conspiring attack,and especially the dishonest controller’s attacks.展开更多
Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multipl...Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.展开更多
Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optima...Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optimal control is designed for promoting cooperation based on the recent advances in mechanisms for the evolution of cooperation. Two con- trol strategies are proposed: compensation control strategy for the cooperator when playing against a defector and reward control strategy for cooperator when playing against a coop- erator. The feasibility and effectiveness of these control strategies for promoting cooperation in different stages are analyzed. The reward for cooperation can't prevent defection from being evolutionary stable strategy (ESS). On the other hand, compensation for the coopera- tor can't prevent defection from emerging and sustaining. By considering the effect and the cost, an optimal control scheme with constraint on the admissible control set is put forward. By analyzing the special nonlinear system of replicator dynamics, the exact analytic solution of the optimal control scheme is obtained based on the maximum principle. Finally, the effectiveness of the proposed method is illustrated by examples.展开更多
S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameter...S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.展开更多
The modulation and control of gecko's foot movements were studied electrophysiologically in order to design the motor control system of a gecko-mimic robot. In this study (1) the anatomy of the peripheral nerves co...The modulation and control of gecko's foot movements were studied electrophysiologically in order to design the motor control system of a gecko-mimic robot. In this study (1) the anatomy of the peripheral nerves controlling the gecko's foot movements was determined; (2) the relationship between the limb nerves of the gecko and its foot motor patterns was studied; (3) the afferent impulses of the nerves evoked by rubbing the gecko's toes and palm were recorded; (4) copying the natural patterns of movement of the gecko's foot (abduction, adduction, flexion, and revolution) and its limb nerve modulation and control mechanism, the nerves were stimulated under computer control, and the results recorded by CCD. Results suggest that gecko's foot movements can be successfully controlled by artificial electrical signals.展开更多
In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to im...In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.展开更多
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
文摘Monitoring temporal changes in sea level is important in assessing coastal risk.Sea level anomalies at a tide gauge station,if kinematically conceived,include systematic variations such as trend,acceleration,periodic oscillations,and random disturbances.Among them,the non-stationary nature of the random sea level variations of known or unknown origin at coastal regions has been long recognized by the sea level community.This study proposes the analyses of subgroups of random residual statistics of a rigorously formulated kinematic model solution of tide gauge variations using X-bar and S control charts.The approach is demonstrated using Key West,Florida tide gauge records.The mean and standard errors of 5-year-long subgroups of the residuals revealed that sea level changes at this location have been progressively intensifying from 1913 to the present.Increasing oscillations in sea level at this locality may be attributed partly to the thermal expansion of seawater with increasing temperatures causing larger buoyancy-related sea level fluctuations as well as the intensification of atmospheric events including wind patterns and the impact of changes in inverted barometer effects that will alter coastal risk assessments for the future.
基金This work was supported by the National Natural Science Foundation of China under Grant[number 51575167]。
文摘This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.
文摘The Brushless DC Motor drive systems are used widely with renewable energy resources.The power converter controlling technique increases the performance by novel techniques and algorithms.Conventional approaches are mostly focused on buck converter,Fuzzy logic control with various switching activity.In this proposed research work,the QPSO(Quantum Particle Swarm Optimization algorithm)is used on the switching state of converter from the generation unit of solar module.Through the duty cycle pulse from optimization function,the MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)of the Boost converter gets switched when BLDC(Brushless Direct Current Motor)motor drive system requires power.Voltage Source three phase inverter and Boost converter is controlled by proportional-integral(PI)controller.Based on the BLDC drive,the load utilized from the solar generating module.Experimental results analyzed every module of the proposed grid system,which are solar generation utilizes the irradiance and temperature depends on this the Photovoltaics(PV)power is generated and the QPSO with Duty cycle switching state is determined.The Boost converter module is boost stage based on generation and load is obtained.Single Ended Primary Inductor Converter(SEPIC)and Zeta converter model is compared with the proposed logic;the proposed boost converter achieves the results.Three phase inverter control,PI,and BLDC motor drive results.Thus the proposed grid model is constructed to obtain the better performance results than most recent literatures.Overall design model is done by using MATLAB/Simulink 2020a.
基金National Natural Science Foundation of China(No.61262007)Guizhou Science and Technology Department School Cooperation Project(Qian Bureau No.[2013]7001)Guiyang Science and Technology Department Platform for Innovation Plan(No.2012303)
文摘In order to solve the complex wiring and low reliability of conventional light control system,an automobile contactless switch light system is designed combined with Hall element and controller area network (CAN) bus technology.The processing system of electromagnetic compatibility controlled by CAN bus is improved to reduce the electromagnetic interference from the controller and other sources of interference.With Freescale's high-performance single-chip MC9S08DZ60 and CAN transceiver TJA1050,the overall circuit design and software design are presented.The test results show that the designed light control system is feasible.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
文摘In recent years,there has been a critical change in treatment paradigms in inflammatory bowel diseases(IBD)triggered by the arrival of new effective treatments aiming to prevent disease progression,bowel damage and disability.The insufficiency of symptomatic disease control and the well-known discordance between symptoms and objective measures of disease activity lead to the need of reviewing conventional treatment algorithms and developing new concepts of optimal therapeutic strategy.The treat-to-target strategies,defined by the selecting therapeutic targets in inflammatory bowel disease consensus recommendation,move away from only symptomatic disease control and support targeting composite therapeutic endpoints(clinical and endoscopical remission)and timely assessment.Emerging data suggest that early therapy using a treat-to-target approach and an algorithmic therapy escalation using regular disease monitoring by clinical and biochemical markers(fecal calprotectin and C-reactive protein)leads to improved outcomes.This review aims to present the emerging strategies and supporting evidence in the current therapeutic paradigm of IBD including the concepts of“early intervention”,“treat-to-target”and“tight control”strategies.We also discuss the real-word experience and applicability of these new strategies and give an overview on the future perspectives and areas in need of further research and potential improvement regarding treatment targets and(“tight”)disease monitoring strategies.
基金Project supported by the National Natural Science Foundation of China(Grant No.61502048)the Natural Science Foundation of Shanxi Province of China(Grant No.201801D221159)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China(Grant No.2019L0470)Youth Research Foundation of Shanxi University of Finance and Economics in Shanxi Province of China(Grant No.QN-2016009)
文摘Quantum system is inevitably affected by the external environment in the real world.Two controlled quantum dialogue protocols are put forward based on logicalχ-type states under collective noise environment.One is against collectivedephasing noise,while the other is against collective-rotation noise.Compared with existing protocols,there exist several outstanding advantages in our proposed protocols:Firstly,theχ-type state is utilized as quantum channels,it possesses better entanglement properties than GHZ state,W state as well as cluster state,which make it difficult to be destroyed by local operations.Secondly,two kinds of logicalχ-type states are constructed by us in theory,which can be perfectly immune to the effects of collective noise.Thirdly,the controller can be offline after quantum distribution and permission announcement,without waiting for all the participants to complete the information coding.Fourthly,the security analysis illuminates that our protocols can not only be free from the information leakage,but also resist against the interceptand-resend attack,the entanglement-and-measure attack,the modification attack,the conspiring attack,and especially the dishonest controller’s attacks.
基金Project supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province of China(Grant No. LYM10074)the Natural Science Foundation of Guangdong Province,China (Grant No. 9451042001004076)
文摘Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.
文摘Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optimal control is designed for promoting cooperation based on the recent advances in mechanisms for the evolution of cooperation. Two con- trol strategies are proposed: compensation control strategy for the cooperator when playing against a defector and reward control strategy for cooperator when playing against a coop- erator. The feasibility and effectiveness of these control strategies for promoting cooperation in different stages are analyzed. The reward for cooperation can't prevent defection from being evolutionary stable strategy (ESS). On the other hand, compensation for the coopera- tor can't prevent defection from emerging and sustaining. By considering the effect and the cost, an optimal control scheme with constraint on the admissible control set is put forward. By analyzing the special nonlinear system of replicator dynamics, the exact analytic solution of the optimal control scheme is obtained based on the maximum principle. Finally, the effectiveness of the proposed method is illustrated by examples.
基金Supported by the 863 Project under Grant No.2008AA092301the Fundamental Research Foundation of Harbin Engineering University under Grant No.2007001
文摘S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.
基金This work was funded by Hi-tech Research and Development Program of China(2002AA 423230)National Natural Science Foundation of China(90205014,30400086).
文摘The modulation and control of gecko's foot movements were studied electrophysiologically in order to design the motor control system of a gecko-mimic robot. In this study (1) the anatomy of the peripheral nerves controlling the gecko's foot movements was determined; (2) the relationship between the limb nerves of the gecko and its foot motor patterns was studied; (3) the afferent impulses of the nerves evoked by rubbing the gecko's toes and palm were recorded; (4) copying the natural patterns of movement of the gecko's foot (abduction, adduction, flexion, and revolution) and its limb nerve modulation and control mechanism, the nerves were stimulated under computer control, and the results recorded by CCD. Results suggest that gecko's foot movements can be successfully controlled by artificial electrical signals.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(2015AA042307)Shandong Provincial Scientific and Technological Development Foundation(2014GGX103038)+3 种基金Shandong Provincial Independent Innovation and Achievement Transformation Special Foundation(2015ZDXX0101E01)National Natural Science Fundation of China(NSFC)Joint Fund of Shandong Province(U1706228)the Fundamental Research Funds of Shandong University(2015JC027)
文摘In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.