Let C(R_+~2) be a class of continuous functions f on R+2. A bivariate extension Ln(f,x,y) of Bleimann-Butzer-Hahn operator is defined and its standard convergence properties are given. Moreover, a local analogue of Vo...Let C(R_+~2) be a class of continuous functions f on R+2. A bivariate extension Ln(f,x,y) of Bleimann-Butzer-Hahn operator is defined and its standard convergence properties are given. Moreover, a local analogue of Voronovskaja theorem is also given for a subclass of C(R+2 ).展开更多
利用经典的Zeng分解方法,并结合Bleimann-Butzer and Hahn算子基函数的界,讨论了Bleimann-Butzer and Hahn-Bézier算子在0<α<1时对一般有界函数的逼近,得到比较好的收敛阶估计,所得结果拓展了在α≥1时对有界变差函数逼近...利用经典的Zeng分解方法,并结合Bleimann-Butzer and Hahn算子基函数的界,讨论了Bleimann-Butzer and Hahn-Bézier算子在0<α<1时对一般有界函数的逼近,得到比较好的收敛阶估计,所得结果拓展了在α≥1时对有界变差函数逼近的研究工作.展开更多
文摘Let C(R_+~2) be a class of continuous functions f on R+2. A bivariate extension Ln(f,x,y) of Bleimann-Butzer-Hahn operator is defined and its standard convergence properties are given. Moreover, a local analogue of Voronovskaja theorem is also given for a subclass of C(R+2 ).