In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in ...In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.展开更多
This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we p...This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.展开更多
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1412800 the Innovation Program of Shanghai Municipal Education Commission under Grant No.10ZZ131
文摘In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.
文摘This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.