Blood analysis is a ubiquitous and critical aspect of modern medicine.Analyzing blood samples requires invasive techniques,various testing systems,and samples are limited to relatively small volumes.Photoacoustic imag...Blood analysis is a ubiquitous and critical aspect of modern medicine.Analyzing blood samples requires invasive techniques,various testing systems,and samples are limited to relatively small volumes.Photoacoustic imaging(PAI)is a novel imaging modality that utilizes non-ionizing energy that shows promise as an alternative to current methods.This paper seeks to review current applications of PAI in blood analysis for clinical use.Furthermore,we discuss obstacles to implementation and future directions to overcome these challenges.Firstly,we discuss three applications to cellular analysis of blood:sickle cell,bacteria,and circulating tumor cell detection.We then discuss applications to the analysis of blood plasma,including glucose detection and anticoagulation quantification.As such,we hope this article will serve as inspiration for PAI's potential application in blood analysis and prompt further studies to ultimately implement PAI into clinical practice.展开更多
BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shor...BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shortcomings.Since blood gas analysis is a widely used technique reflecting global oxygen supply and consumption,it may serve as a surrogate for microcirculation monitoring in septic treatment.METHODS:We performed a search using PubMed,Web of Science,and Google scholar.The studies and reviews that were most relevant to septic microcirculatory dysfunctions and blood gas parameters were identified and included.RESULTS:Based on the pathophysiology of oxygen metabolism,the included articles provided a general overview of employing blood gas analysis and its derived set of indicators for microhemodynamic monitoring in septic care.Notwithstanding flaws,several parameters are linked to changes in the microcirculation.A comprehensive interpretation of blood gas parameters can be used in order to achieve hemodynamic optimization in septic patients.CONCLUSION:Blood gas analysis in combination with clinical performance is a reliable alternative for microcirculatory assessments.A deep understanding of oxygen metabolism in septic settings may help emergency physicians to better use blood gas analysis in the evaluation and treatment of sepsis and septic shock.展开更多
The increasing intensity and frequency of sand-dust storms in China has led to greater prominence of associated environmentaland health issues. Many studies have focused on the health effects of air particulate contam...The increasing intensity and frequency of sand-dust storms in China has led to greater prominence of associated environmentaland health issues. Many studies have focused on the health effects of air particulate contaminants, but fewformal investigations have studied the effects of sand-dust storms on human and animal health. The aim of this study wasto investigate the effects of dust storms on rat lung by using high resolution computed tomography (HRCT) and blood gasanalysis through a wind tunnel simulating. We found that the rat lung damage effects can be detected by the HRCT imagingafter exposure to sand-dust storm environments, but had no obvious result through blood gas analysis. Exposure durationspositively correlated with the damage degree to lung tissue. These will provide some evidence for clinical diagnosis ofnon-occupational pneumoconiosis.展开更多
Objective:To systematic evaluation by the dorsalis pedis artery puncture for bed patients blood gas analysis of application effect of impact.Methods:A randomized controlled trial of the effect of arterial blood extrac...Objective:To systematic evaluation by the dorsalis pedis artery puncture for bed patients blood gas analysis of application effect of impact.Methods:A randomized controlled trial of the effect of arterial blood extraction on blood gas analysis in PubMed,CNKI,Wanfang database and VIP database.After selecting the literature,extracting the data and evaluating the quality of the literature.Meta- analysis was carried out by RevMan 5.3 software.Results:Twelve randomized controlled trials were included and 1696 patients were enrolled.After meta-analysis,the arterial puncture can effectively improve the success of arterial puncture in patients with bed [Z = 5.78,95%CI(1.90,3.66),P<0.001],reduce the occurrence of hematoma [Z = 4.27,95%CI(0.19,0.54),P<0.001],reduce the mistaken into the vein [Z = 4.60,95%CI(0.08,0.36),P<0.001],reduce cyanosis [Z = 2.84,95%CI(0.23,0.81),P<0.008],the difference was statistically significant.Conclusion:Dorsalis pedis artery puncture can improve the success rate of blood gas analysis in bedridden patients,reduce the incidence of hematoma and the incidence of venous leakage,and can be widely used in clinical practice.展开更多
Parkinson's disease (PD) is a typical degenerative disease, which is characterized by the most obvious symptoms of movement dysfunction, including shaking, rigidity, slowness of movement and difficulty in walking a...Parkinson's disease (PD) is a typical degenerative disease, which is characterized by the most obvious symptoms of movement dysfunction, including shaking, rigidity, slowness of movement and difficulty in walking and gait. This disease can not be clearly identified through laboratory tests at present, thus application of high-throughput technique in studying the expression profiles of PD helps to find the genetic markers for its early diagnosis. Studies on expression profiles of neurodegenerative diseases have revealed the novel genes and pathways involved in the progress of illness. In this study, the expression profiles of PD in blood were compared, showing that 181 differentially expressed genes (DEG) exhibit a similar expression trend both in patients and in normal controls.展开更多
This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional te...This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets.展开更多
Objective:To study the therapy effect of ultraviolet blood irradiation and oxygenation (UBIO) on blood AChe activity and lung injury due to acute soman intoxication in rabbits. Methods:Forty rabbits were randomly di...Objective:To study the therapy effect of ultraviolet blood irradiation and oxygenation (UBIO) on blood AChe activity and lung injury due to acute soman intoxication in rabbits. Methods:Forty rabbits were randomly divided into 4 groups: normal control group, intoxication group, routine therapy group and UBIO therapy group. Blood AChe activity and artery blood gas were analyzed 2 h after intoxication. ACP and AKP activities in BALF were determined respectively. Results:Blood AChe activity in intoxication group was lower than that in normal control group (P<0.05). BALF ACP and AKP activities in intoxication group were higher than that in normal control group. Blood AChe activities in UBIO therapy group increased and were higher than that in intoxication and routine therapy groups. Compared with intoxication group, BALF ACP and AKP activities were decreased (P<0.05) in UBIO therapy group, while artery blood pH, PaO2 and SaO2 increased (P<0.05). Conclusion: UBIO therapy can elevate blood AChe activity and alleviate lung injury induced by soman intoxication. So it may be a new way to treat acute soman intoxication.展开更多
AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fe...AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fed as a real-time data stream to an experimental medical framework. This framework was connected to an analytical application which observes changes in systolic, diastolic and mean pressure to determine anomalies in the continuous data stream. Detection was based on an increased mean blood pressure caused by the closing of the withdrawal three-way tap and an absence of systolic and diastolic measurements during this manipulation. For evaluation of the proposed algorithm, measured data from animal studies in healthy pigs were used.RESULTS Using this novel approach for processing real-time measurement data of arterial pressure monitoring, the exact time of blood withdrawal could be successfully detected retrospectively and in real-time. The algorithm was able to detect 422 of 434(97%) blood withdrawals for blood gas analysis in the retrospective analysis of 7 study trials. Additionally, 64 sampling events for other procedures like laboratory and activated clotting time analyses were detected. The proposed algorithm achieved a sensitivity of 0.97, a precision of 0.96 and an F1 score of 0.97.CONCLUSION Arterial blood pressure monitoring data can be used toperform an accurate identification of individual blood samplings in order to reduce sample mix-ups and thereby increase patient safety.展开更多
基金This research was funded by The United States National Institutes of Health(NIH)grants R38HL143612,R21EB027981,R21 EB027304,RF1 NS115581(BRAIN Initiative),R01 NS111039,R01 EB028143The United States National Science Foundation(NSF)CAREER award 2144788Chan Zuckerberg Initiative Grant(2020-226178).
文摘Blood analysis is a ubiquitous and critical aspect of modern medicine.Analyzing blood samples requires invasive techniques,various testing systems,and samples are limited to relatively small volumes.Photoacoustic imaging(PAI)is a novel imaging modality that utilizes non-ionizing energy that shows promise as an alternative to current methods.This paper seeks to review current applications of PAI in blood analysis for clinical use.Furthermore,we discuss obstacles to implementation and future directions to overcome these challenges.Firstly,we discuss three applications to cellular analysis of blood:sickle cell,bacteria,and circulating tumor cell detection.We then discuss applications to the analysis of blood plasma,including glucose detection and anticoagulation quantification.As such,we hope this article will serve as inspiration for PAI's potential application in blood analysis and prompt further studies to ultimately implement PAI into clinical practice.
基金supported by the grants from Innovation Fund for Medical Sciences (CIFMS) from Chinese Academy of Medical Sciences (No.2021-I2M-1-062)National Key R&D Program of China from Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2304601,2021YFC2500801)+1 种基金National High Level Hospital Clinical Research Funding (2022-PUMCH-D-005,2022-PUMCH-D-111,2022-PUMCH-B-126)National key clinical specialty construction projects from National Health Commission。
文摘BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shortcomings.Since blood gas analysis is a widely used technique reflecting global oxygen supply and consumption,it may serve as a surrogate for microcirculation monitoring in septic treatment.METHODS:We performed a search using PubMed,Web of Science,and Google scholar.The studies and reviews that were most relevant to septic microcirculatory dysfunctions and blood gas parameters were identified and included.RESULTS:Based on the pathophysiology of oxygen metabolism,the included articles provided a general overview of employing blood gas analysis and its derived set of indicators for microhemodynamic monitoring in septic care.Notwithstanding flaws,several parameters are linked to changes in the microcirculation.A comprehensive interpretation of blood gas parameters can be used in order to achieve hemodynamic optimization in septic patients.CONCLUSION:Blood gas analysis in combination with clinical performance is a reliable alternative for microcirculatory assessments.A deep understanding of oxygen metabolism in septic settings may help emergency physicians to better use blood gas analysis in the evaluation and treatment of sepsis and septic shock.
基金supported by the National Natural Science Foundation of China (41161019, 41461020)
文摘The increasing intensity and frequency of sand-dust storms in China has led to greater prominence of associated environmentaland health issues. Many studies have focused on the health effects of air particulate contaminants, but fewformal investigations have studied the effects of sand-dust storms on human and animal health. The aim of this study wasto investigate the effects of dust storms on rat lung by using high resolution computed tomography (HRCT) and blood gasanalysis through a wind tunnel simulating. We found that the rat lung damage effects can be detected by the HRCT imagingafter exposure to sand-dust storm environments, but had no obvious result through blood gas analysis. Exposure durationspositively correlated with the damage degree to lung tissue. These will provide some evidence for clinical diagnosis ofnon-occupational pneumoconiosis.
文摘Objective:To systematic evaluation by the dorsalis pedis artery puncture for bed patients blood gas analysis of application effect of impact.Methods:A randomized controlled trial of the effect of arterial blood extraction on blood gas analysis in PubMed,CNKI,Wanfang database and VIP database.After selecting the literature,extracting the data and evaluating the quality of the literature.Meta- analysis was carried out by RevMan 5.3 software.Results:Twelve randomized controlled trials were included and 1696 patients were enrolled.After meta-analysis,the arterial puncture can effectively improve the success of arterial puncture in patients with bed [Z = 5.78,95%CI(1.90,3.66),P<0.001],reduce the occurrence of hematoma [Z = 4.27,95%CI(0.19,0.54),P<0.001],reduce the mistaken into the vein [Z = 4.60,95%CI(0.08,0.36),P<0.001],reduce cyanosis [Z = 2.84,95%CI(0.23,0.81),P<0.008],the difference was statistically significant.Conclusion:Dorsalis pedis artery puncture can improve the success rate of blood gas analysis in bedridden patients,reduce the incidence of hematoma and the incidence of venous leakage,and can be widely used in clinical practice.
基金supported by the National Natural Science Foundation of China(81101302,31270185)SKLID Development Grant(2014,SKLID201)
文摘Parkinson's disease (PD) is a typical degenerative disease, which is characterized by the most obvious symptoms of movement dysfunction, including shaking, rigidity, slowness of movement and difficulty in walking and gait. This disease can not be clearly identified through laboratory tests at present, thus application of high-throughput technique in studying the expression profiles of PD helps to find the genetic markers for its early diagnosis. Studies on expression profiles of neurodegenerative diseases have revealed the novel genes and pathways involved in the progress of illness. In this study, the expression profiles of PD in blood were compared, showing that 181 differentially expressed genes (DEG) exhibit a similar expression trend both in patients and in normal controls.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.61806087,61902158).
文摘This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets.
文摘Objective:To study the therapy effect of ultraviolet blood irradiation and oxygenation (UBIO) on blood AChe activity and lung injury due to acute soman intoxication in rabbits. Methods:Forty rabbits were randomly divided into 4 groups: normal control group, intoxication group, routine therapy group and UBIO therapy group. Blood AChe activity and artery blood gas were analyzed 2 h after intoxication. ACP and AKP activities in BALF were determined respectively. Results:Blood AChe activity in intoxication group was lower than that in normal control group (P<0.05). BALF ACP and AKP activities in intoxication group were higher than that in normal control group. Blood AChe activities in UBIO therapy group increased and were higher than that in intoxication and routine therapy groups. Compared with intoxication group, BALF ACP and AKP activities were decreased (P<0.05) in UBIO therapy group, while artery blood pH, PaO2 and SaO2 increased (P<0.05). Conclusion: UBIO therapy can elevate blood AChe activity and alleviate lung injury induced by soman intoxication. So it may be a new way to treat acute soman intoxication.
文摘AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fed as a real-time data stream to an experimental medical framework. This framework was connected to an analytical application which observes changes in systolic, diastolic and mean pressure to determine anomalies in the continuous data stream. Detection was based on an increased mean blood pressure caused by the closing of the withdrawal three-way tap and an absence of systolic and diastolic measurements during this manipulation. For evaluation of the proposed algorithm, measured data from animal studies in healthy pigs were used.RESULTS Using this novel approach for processing real-time measurement data of arterial pressure monitoring, the exact time of blood withdrawal could be successfully detected retrospectively and in real-time. The algorithm was able to detect 422 of 434(97%) blood withdrawals for blood gas analysis in the retrospective analysis of 7 study trials. Additionally, 64 sampling events for other procedures like laboratory and activated clotting time analyses were detected. The proposed algorithm achieved a sensitivity of 0.97, a precision of 0.96 and an F1 score of 0.97.CONCLUSION Arterial blood pressure monitoring data can be used toperform an accurate identification of individual blood samplings in order to reduce sample mix-ups and thereby increase patient safety.