期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向微博子话题检测的BTM模型研究 被引量:4
1
作者 曹春萍 李瑜 《小型微型计算机系统》 CSCD 北大核心 2022年第10期2090-2095,共6页
现今网络舆情传播速度快、影响力大,研究微博网络中舆情信息的话题检测对有关部门舆情治理以及应急处置具有重要意义.针对传统话题检测方法忽略了微博中更细粒度的子话题研究,并且检测的话题缺乏深层次的语义信息问题,本文将attention... 现今网络舆情传播速度快、影响力大,研究微博网络中舆情信息的话题检测对有关部门舆情治理以及应急处置具有重要意义.针对传统话题检测方法忽略了微博中更细粒度的子话题研究,并且检测的话题缺乏深层次的语义信息问题,本文将attention机制与BLSTM融入到BTM模型中,构建词对主题模型ATT-BLSTM-BTM.该模型通过BLSTM训练词与词之间的相互关系,同时,利用attention机制计算特征词注意力概率分布,以降低语料库中无关词汇对建模的影响,从而提高BTM模型检测子话题的精准性.实验结果显示,本文模型与传统的LDA、BTM和NTM模型相比,生成的子话题在KL值与PMI值上都有明显的提升,证明本文所提模型能够生成质量更高的子话题. 展开更多
关键词 子话题检测 BTM模型 attention机制 blstm模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部