为均衡增强低照度图像的同时,保留其更多的细节信息,提出一种改进Retinex低照度图像增强算法.该算法基于HSV(Hue,Saturation,Value)颜色空间,对分离出的明度分量和饱和度分量进行增强.首先,使用限制对比度自适应直方图均衡化(Contrast L...为均衡增强低照度图像的同时,保留其更多的细节信息,提出一种改进Retinex低照度图像增强算法.该算法基于HSV(Hue,Saturation,Value)颜色空间,对分离出的明度分量和饱和度分量进行增强.首先,使用限制对比度自适应直方图均衡化(Contrast Limited Adap-tive Histogram Equalization,CLAHE)优化明度分量,使图像更接近均匀光照场景,并使用自适应Gamma对饱和度分量进行校正.然后,采用三维块匹配滤波(Block-matching and 3D Filter-ing,BM3D)算法对光照分量进行估计,并求得相应的反射分量,提出一种改进Gamma变换函数,依据光照分量信息对明度分量进行增强,同时,采用Gabor滤波器和Canny算法对原图进行细节提取,提出一种细节增强策略,对反射分量及其纹理细节进行增强.最后,将各分量进行加权融合,再将增强图像变换回RGB空间.实验结果表明,所提算法相较于自动色彩均衡、自适应局部色调映射、低光照图像增强、带色彩恢复多尺度视网膜增强算法有更好的增强效果和普适性,且原图经过增强后,信息熵、峰值信噪比、结构相似性指数、图像质量指数、平均梯度有显著提升,均方根误差显著下降.展开更多
Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performan...Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm.展开更多
文摘为均衡增强低照度图像的同时,保留其更多的细节信息,提出一种改进Retinex低照度图像增强算法.该算法基于HSV(Hue,Saturation,Value)颜色空间,对分离出的明度分量和饱和度分量进行增强.首先,使用限制对比度自适应直方图均衡化(Contrast Limited Adap-tive Histogram Equalization,CLAHE)优化明度分量,使图像更接近均匀光照场景,并使用自适应Gamma对饱和度分量进行校正.然后,采用三维块匹配滤波(Block-matching and 3D Filter-ing,BM3D)算法对光照分量进行估计,并求得相应的反射分量,提出一种改进Gamma变换函数,依据光照分量信息对明度分量进行增强,同时,采用Gabor滤波器和Canny算法对原图进行细节提取,提出一种细节增强策略,对反射分量及其纹理细节进行增强.最后,将各分量进行加权融合,再将增强图像变换回RGB空间.实验结果表明,所提算法相较于自动色彩均衡、自适应局部色调映射、低光照图像增强、带色彩恢复多尺度视网膜增强算法有更好的增强效果和普适性,且原图经过增强后,信息熵、峰值信噪比、结构相似性指数、图像质量指数、平均梯度有显著提升,均方根误差显著下降.
基金the National Natural Science Foundation of China(No.61234001)
文摘Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm.