We prove weighted mixed-norm Lqt(W2,px)and Lqt(C2,αx)estimates for 1<p,q<∞and 0<α<1,weighted mixed weak-type estimates for q=1,L∞t(Lpx)−BMOt(W2,px)and L∞t(Cαx)−BMOt(C2,xx),and a.e.pointwise formulas ...We prove weighted mixed-norm Lqt(W2,px)and Lqt(C2,αx)estimates for 1<p,q<∞and 0<α<1,weighted mixed weak-type estimates for q=1,L∞t(Lpx)−BMOt(W2,px)and L∞t(Cαx)−BMOt(C2,xx),and a.e.pointwise formulas for derivatives,for the solutions u=u(t,x)to parabolic equations of the form∂tu−aij(t)∂iju+u=f,t∈,x∈n and for the Cauchy problem{∂tv−aij(t)∂ijv+v=fv(0,x)forfort>0,x∈Rn.x∈Rn,The coefficients a(t)=(aij(t))are just bounded,measurable,symmetric and uniformly elliptic.Furthermore,we show strong,weak type and BMO-Sobolev estimates with parabolic Muckenhoupt weights.It is quite remarkable that most of our results are new even for the classical heat equation∂tu−Δu+u=f.展开更多
基金supported by Simons Foundation(Grant No.580911(Stinga))Ministerio de Economía y Competitividad/Fondo Europeo de Desarrollo Regional from Government of Spain(Grant No.MTM2015-66157-C2-1-P(Torrea))。
文摘We prove weighted mixed-norm Lqt(W2,px)and Lqt(C2,αx)estimates for 1<p,q<∞and 0<α<1,weighted mixed weak-type estimates for q=1,L∞t(Lpx)−BMOt(W2,px)and L∞t(Cαx)−BMOt(C2,xx),and a.e.pointwise formulas for derivatives,for the solutions u=u(t,x)to parabolic equations of the form∂tu−aij(t)∂iju+u=f,t∈,x∈n and for the Cauchy problem{∂tv−aij(t)∂ijv+v=fv(0,x)forfort>0,x∈Rn.x∈Rn,The coefficients a(t)=(aij(t))are just bounded,measurable,symmetric and uniformly elliptic.Furthermore,we show strong,weak type and BMO-Sobolev estimates with parabolic Muckenhoupt weights.It is quite remarkable that most of our results are new even for the classical heat equation∂tu−Δu+u=f.