Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy pre...Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.展开更多
激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在...激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在临床上取得一定疗效。即便如此,仍未能完整的从分子生物及细胞生物学角度阐明中药治疗SIONFH的作用机制。转化生长因子-β(TGF-β)/骨形态发生蛋白(BMP)/Smad信号通路的转导是防治SIONFH的研究热点之一,故该文阐明了该信号通路的转导机制以及与SIONFH的联系,检索了基于该通路治疗SIONFH的全部中药及复方并阐述其影响机制。基于中医对SIONFH的认识,现临床上使用补肝肾强筋骨以及活血祛瘀通络类的方药治疗SIONFH,且具有良好的疗效。中药通过调控该通路,可刺激骨髓间充质干细胞成骨分化,降低破骨细胞含量,减少脂肪生成,改善微循环,抗氧化损伤,促进股骨头内血管新生,从而促进股骨头损伤的修复。现基于TGF-β/BMP/Smad信号通路对中医药治疗SIONFH的研究进展做一综述,期许为中医药治疗SIONFH提供理论依据及参考。展开更多
旨在探究不同FecB基因型对绵羊卵泡中BMP/SMAD通路活性和蛋白表达的影响;揭示成熟大卵泡和小卵泡之间BMP/SMAD通路活性和蛋白表达的差异。本研究采用TaqMan分型方法筛选出不同FecB基因型的母羊,同期发情后取卵泡期成熟卵泡和黄体期卵巢...旨在探究不同FecB基因型对绵羊卵泡中BMP/SMAD通路活性和蛋白表达的影响;揭示成熟大卵泡和小卵泡之间BMP/SMAD通路活性和蛋白表达的差异。本研究采用TaqMan分型方法筛选出不同FecB基因型的母羊,同期发情后取卵泡期成熟卵泡和黄体期卵巢表面小卵泡,利用免疫印迹法(Western blot)测定BMP/SMAD通路相关蛋白表达水平和通路活性。结果表明,对于小卵泡组,FecB突变型卵泡中骨形态发生蛋白1B型受体(bone morphogenetic protein receptor type 1B,BMPR1B)表达量显著高于野生型卵泡(P<0.05),但SMAD家族成员4(SMAD family member 4,SMAD4)表达量和SMAD1/5/9的磷酸化水平显著低于野生型卵泡(P<0.05);对于成熟大卵泡组,FecB突变型卵泡中FKBP脯氨酰异构酶1A(FKBP prolyl isomerase 1A,FKBP1A)和SMAD4表达量显著低于野生型卵泡(P<0.05),Ⅰ型受体(BMPR1B)和Ⅱ型受体(BMPR2)的蛋白表达量及SMAD1/5/9的磷酸化水平在两种基因型之间未显示出显著差异。另一方面,对比FecB突变型小卵泡和成熟大卵泡发现:成熟大卵泡中BMPR1B和SMAD4蛋白表达量和SMAD1/5/9磷酸化程度显著高于小卵泡(P<0.05)。上述结果表明,由于SMAD4表达量的下降,FecB突变型大、小卵泡中结合到基因组靶区域的SMAD4-SMAD1/5/9蛋白复合物均相对较少,将导致通路活性降低,而且由于小卵泡中较低的SMAD1/5/9磷酸化水平,其通路活性更低。另外,绵羊突变型卵泡生长发育成熟后BMP/SMAD通路活性显著增强。展开更多
Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure tre...Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.展开更多
Mint is a newly identified molecule that mediates signal transduction and modulates chromatin repression. Mint family members contain a highly conserved C-terminus SPOC domain (SpenParalog and OrthologsC-terminal doma...Mint is a newly identified molecule that mediates signal transduction and modulates chromatin repression. Mint family members contain a highly conserved C-terminus SPOC domain (SpenParalog and OrthologsC-terminal domain) commonly associated with proliferation and related diseases (for example: cancer) due to its role in cell differentiation and apoptosis. In this study, we addressed the SPOC function using a tetracycline-inducible system to express the target domain in Ain V15 embryonic ES cells and bone marrow stem cells from SPOC transenic mice. In vitro differentiation of Ain V15 ES cells as a model of early hematopoietic development, we found expression of SPOC domain induces hematopoietic differentiation via up-regulation of transcription factors Bmp4 and Smad5, which induce the expression of hematopoietic factors Eklf1 and hematopoietic proliferation associated factor Gata2, the SPOC domain also plays the regulation function in the differentiation of hematopoitic progenitor by colony forming Unit (CFU) assays. Further, we determined SPOC expression enhances erythrocyte and granulocyte maturationusing bone marrow cells derived from tiSPOC chimeric mice. Finally, we identified that overexpression of full length Mint in ES cells drive Smad5 and Bmp4 up-regulation under culture conditions, and up-regulation of endogenous Mint when induceshematopoitic differentiation of EML, M1 and WT18 cells. In summary, our study reveals the conserved SPOC domain of Mint protein induces differentiation both in the stages of embryonic stem cells and hematopoietic progenitor cells.展开更多
目的:观察丹酚酸A对5/6肾切除(Platt法)大鼠肾组织骨形态发生蛋白-7(BMP-7)、转化生长因子β_1(TGF-β_1)/Smads信号通路的调节作用。方法:将40只大鼠随机分为:假手术组、模型组、丹酚酸A组、科素亚组,采用Platt法复制慢性肾衰竭大鼠模...目的:观察丹酚酸A对5/6肾切除(Platt法)大鼠肾组织骨形态发生蛋白-7(BMP-7)、转化生长因子β_1(TGF-β_1)/Smads信号通路的调节作用。方法:将40只大鼠随机分为:假手术组、模型组、丹酚酸A组、科素亚组,采用Platt法复制慢性肾衰竭大鼠模型,术后8周分别观察大鼠肾组织BMP-7、Smad6、TGF-β_1蛋白及基因的表达,p-Smad2/3、p-Smad1/5/8的蛋白表达。结果:各治疗组大鼠肾组织BMP-7、Smad6、p-Smad1/5/8的表达较模型组升高(P<0.01 or P<0.05),TGF-β_1、p-Smad2/3的表达较模型组明显减弱(P<0.01 or P<0.05)。结论:丹酚酸A可能是通过诱导BMP-7、Smad6、p-Smad1/5/8蛋白表达,抑制p-Smad2/3蛋白表达,调节BMP-7/Smads/TGF-β_1信号通路,抑制了TGF-β_1信号向细胞核内转导的通路,从而抑制细胞外基质增生,起到延缓肾纤维化的作用。展开更多
基金Beijing Natural Science Foundation,Grant/Award Number:L222145 and L222030Emerging Engineering Interdisciplinary Project and the Fundamental Research Funds for the Central Universities,Grant/Award Number:PKU2022XGK008Peking University Medicine Fund of Fostering Young Scholars’Scientific&Technological Innovation,Grant/Award Number:BMU2022PY010。
文摘Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.
文摘激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在临床上取得一定疗效。即便如此,仍未能完整的从分子生物及细胞生物学角度阐明中药治疗SIONFH的作用机制。转化生长因子-β(TGF-β)/骨形态发生蛋白(BMP)/Smad信号通路的转导是防治SIONFH的研究热点之一,故该文阐明了该信号通路的转导机制以及与SIONFH的联系,检索了基于该通路治疗SIONFH的全部中药及复方并阐述其影响机制。基于中医对SIONFH的认识,现临床上使用补肝肾强筋骨以及活血祛瘀通络类的方药治疗SIONFH,且具有良好的疗效。中药通过调控该通路,可刺激骨髓间充质干细胞成骨分化,降低破骨细胞含量,减少脂肪生成,改善微循环,抗氧化损伤,促进股骨头内血管新生,从而促进股骨头损伤的修复。现基于TGF-β/BMP/Smad信号通路对中医药治疗SIONFH的研究进展做一综述,期许为中医药治疗SIONFH提供理论依据及参考。
文摘旨在探究不同FecB基因型对绵羊卵泡中BMP/SMAD通路活性和蛋白表达的影响;揭示成熟大卵泡和小卵泡之间BMP/SMAD通路活性和蛋白表达的差异。本研究采用TaqMan分型方法筛选出不同FecB基因型的母羊,同期发情后取卵泡期成熟卵泡和黄体期卵巢表面小卵泡,利用免疫印迹法(Western blot)测定BMP/SMAD通路相关蛋白表达水平和通路活性。结果表明,对于小卵泡组,FecB突变型卵泡中骨形态发生蛋白1B型受体(bone morphogenetic protein receptor type 1B,BMPR1B)表达量显著高于野生型卵泡(P<0.05),但SMAD家族成员4(SMAD family member 4,SMAD4)表达量和SMAD1/5/9的磷酸化水平显著低于野生型卵泡(P<0.05);对于成熟大卵泡组,FecB突变型卵泡中FKBP脯氨酰异构酶1A(FKBP prolyl isomerase 1A,FKBP1A)和SMAD4表达量显著低于野生型卵泡(P<0.05),Ⅰ型受体(BMPR1B)和Ⅱ型受体(BMPR2)的蛋白表达量及SMAD1/5/9的磷酸化水平在两种基因型之间未显示出显著差异。另一方面,对比FecB突变型小卵泡和成熟大卵泡发现:成熟大卵泡中BMPR1B和SMAD4蛋白表达量和SMAD1/5/9磷酸化程度显著高于小卵泡(P<0.05)。上述结果表明,由于SMAD4表达量的下降,FecB突变型大、小卵泡中结合到基因组靶区域的SMAD4-SMAD1/5/9蛋白复合物均相对较少,将导致通路活性降低,而且由于小卵泡中较低的SMAD1/5/9磷酸化水平,其通路活性更低。另外,绵羊突变型卵泡生长发育成熟后BMP/SMAD通路活性显著增强。
基金the China’s National Key Research and Development Program Projects(No.2022YFC3500500 and No.2022YFC3500502).
文摘Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.
文摘Mint is a newly identified molecule that mediates signal transduction and modulates chromatin repression. Mint family members contain a highly conserved C-terminus SPOC domain (SpenParalog and OrthologsC-terminal domain) commonly associated with proliferation and related diseases (for example: cancer) due to its role in cell differentiation and apoptosis. In this study, we addressed the SPOC function using a tetracycline-inducible system to express the target domain in Ain V15 embryonic ES cells and bone marrow stem cells from SPOC transenic mice. In vitro differentiation of Ain V15 ES cells as a model of early hematopoietic development, we found expression of SPOC domain induces hematopoietic differentiation via up-regulation of transcription factors Bmp4 and Smad5, which induce the expression of hematopoietic factors Eklf1 and hematopoietic proliferation associated factor Gata2, the SPOC domain also plays the regulation function in the differentiation of hematopoitic progenitor by colony forming Unit (CFU) assays. Further, we determined SPOC expression enhances erythrocyte and granulocyte maturationusing bone marrow cells derived from tiSPOC chimeric mice. Finally, we identified that overexpression of full length Mint in ES cells drive Smad5 and Bmp4 up-regulation under culture conditions, and up-regulation of endogenous Mint when induceshematopoitic differentiation of EML, M1 and WT18 cells. In summary, our study reveals the conserved SPOC domain of Mint protein induces differentiation both in the stages of embryonic stem cells and hematopoietic progenitor cells.
文摘目的:观察丹酚酸A对5/6肾切除(Platt法)大鼠肾组织骨形态发生蛋白-7(BMP-7)、转化生长因子β_1(TGF-β_1)/Smads信号通路的调节作用。方法:将40只大鼠随机分为:假手术组、模型组、丹酚酸A组、科素亚组,采用Platt法复制慢性肾衰竭大鼠模型,术后8周分别观察大鼠肾组织BMP-7、Smad6、TGF-β_1蛋白及基因的表达,p-Smad2/3、p-Smad1/5/8的蛋白表达。结果:各治疗组大鼠肾组织BMP-7、Smad6、p-Smad1/5/8的表达较模型组升高(P<0.01 or P<0.05),TGF-β_1、p-Smad2/3的表达较模型组明显减弱(P<0.01 or P<0.05)。结论:丹酚酸A可能是通过诱导BMP-7、Smad6、p-Smad1/5/8蛋白表达,抑制p-Smad2/3蛋白表达,调节BMP-7/Smads/TGF-β_1信号通路,抑制了TGF-β_1信号向细胞核内转导的通路,从而抑制细胞外基质增生,起到延缓肾纤维化的作用。