BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structur...BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structure was characterized by XRD and FT-IR spectra. The SiCf/SiC composites with dip-coated BN interphase were fabricated by chemical vapor infiltration (CVI) process, and the effects ofBN interphase on the mechanical properties of composites were investigated. The results show that the SiC fibers are fully covered by BN interphase with smooth surface and turbostratic structure (t-BN), and the thickness is about 0.4 μm. The flexural strengths of SiCf/SiC composites with and without BN interphase are about 180 and 95 MPa, respectively. Compared with the as-received SiCf/SiC composites, the composites with BN interphase exhibit an obvious toughened fracture behavior. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in protecting the fibers from chemical attack during matrix infiltration and weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably.展开更多
In order to effectively employ the unique high temperature mechanical properties of carbon/carbon composite substrates, SiC coatings reinforced by SiC whiskers were prepared by pack cementation method. The effect of S...In order to effectively employ the unique high temperature mechanical properties of carbon/carbon composite substrates, SiC coatings reinforced by SiC whiskers were prepared by pack cementation method. The effect of SiC whiskers on the oxidation resistance properties of the single-layer coating and double-layer coating was investigated. SiC whiskers in the single-layer SiC coating have little effect on the anti-oxidation property but obviously improve the thermal shock property. The double-layer coating with inner-layer reinforced coating exhibits more perfect anti-oxidation ability than the double-layer coating with SiC inner-layer coating.展开更多
The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in t...The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in the coatings increase with the increase of RE in the bath. When RE is added in the coatings, the grains are refined and the trend of formation of amorphous coatings is increased. Moreover, the thermal stability of the RE Ni W B SiC composite coatings is enhanced. The hardness of the coatings is increased with the increase of heat treatment temperature, and it reaches the peak value when heated at 400 ℃. Besides, the hardness of the RE Ni W B SiC coatings is higher than that of the Ni W B SiC coatings.展开更多
The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because o...The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because of the over potential of H 2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co deposit in the form of Ni 4B 3 without evolution of hydrogen when the cathodical potential is kept to be -1.415 ~ -1.700?V.展开更多
The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amo...The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amorphous under 300℃, partially crystalline at 300-400℃,and crystalline when heat treatment temperature reaches 400℃,the crystals being fine Ni3P phase particles.The hardness,wear resistance and the crystallization temperature of the composite coatings increase when an additive is added into the bath.The hardness and wear resistance of the coatings increase with increasing heat treatment temperature,and they will reach their peak values when the heat treatment temperature reaches 400℃.Corrosion experiment indicates that the corrosion resistance of amorphous Ni-W-P-SiC composite coatings in various kinds of corrosive media except nitric acid is better than that of stainless steel 1Cr18Ni9Ti.Scanning electron microscopy observation shows that the additive has no effect on the surface appearance of the coatings,but the current density and the pH value have considerable effects on the surface appearance.展开更多
In order to enhance the oxidation resistance of C/Si C composites, mullite/yttrium silicate coatings were fabricated on C/Si C composites through dip-coating route. Al_2O_3-SiO_2 sol with high solid content was select...In order to enhance the oxidation resistance of C/Si C composites, mullite/yttrium silicate coatings were fabricated on C/Si C composites through dip-coating route. Al_2O_3-SiO_2 sol with high solid content was selected as the raw material for mullite and "silicone resin + Y_2O_3 powder" slurry was used to synthesize yttrium silicate. The microstructure and phase composition of coatings were characterized, and the investigation on oxidation resistance and anti-oxidation mechanism was emphasized. The as-fabricated coatings consisting of SiO_2-rich mullite phase and Y_2Si_2O_7 phase show high density and favorable bonding to C/Si C composites. After oxidized at 1 400 ℃ and 1 500 ℃ for 30 min in static air, the coating-containing C/Si C composites possess 91.9% and 102.4% of the original flexural strength, respectively. The desirable thermal stability of coatings and the further densification of coatings due to viscous flow of rich SiO_2 and Y-Si-Al-O glass are responsible for the excellent oxidation resistance. In addition, the coating-containing composites retain 99.0% of the original flexural strength and the coatings exhibit no cracking and desquamation after 12 times of thermal shock from 1 400 ℃ to room temperature, which are ascribed to the combination of anti-oxidation mechanism and preferable physical and chemical compatibility among C/Si C composites, mullite and Y_2Si_2O_7. The carbothermal reaction at 1 600 ℃ between free carbon in C/Si C substrate and rich SiO_2 in mullite results in severe frothing and desquamation of coatings and obvious degradation in oxidation resistance.展开更多
The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results ...The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results indicate that pulse current can improve the deposition rate of RE-Ni-W-P-SiC composite coatings; W, P, and SiC contents in the coating decrease with the increase of pulse frequency and reach the lowest value at f = 33Hz, whereas the RE content in the composite coatings increases with the increase of pulse frequency. SiC content decreases with the increase of duty cycle, W content reaches the lowest value, and P content reaches the highest value at r = 0.4; pulse current and RE can lead to smaller size of the crystalline grains; however, the effects of different pulse frequency and duty cycle on the morphologies of RE-Ni-W-P-SiC composite coatings are not obvious. The hardness of RE-Ni-W-P-SiC composite coatings is the highest when the duty cycle is at 0.6 and 0.8 and pulse frequency is at 50Hz. At the same pulse frequency, the hardness of RE-Ni-W-P-SiC composite coatings at r= 0.8 is higher than that at r= 0.6.展开更多
Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor depositi...Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor deposition(CVD) alternated with slurry painting were applied on C/C-SiC composites, respectively. The oxidation of three samples at 1 500 ℃ was compared. The results show that the C/C-SiC substrate is distorted quickly. Three-layer Si-Mo coating is out of service soon due to the formation of many bubbles on surface. The mass loss of coated sample is 0.76% after 1 h oxidation. The sample with SiC/Si-Mo multilayer coating gains mass even after 105 h oxidation. SiC/Si-Mo multilayer coating can provide longtime protection for C/C-SiC composites and has excellent thermal shock resistance. This is attributed to the combination of dense SiC layer and porous Si-Mo layer. Dense SiC layer plays the dual role of physical and chemical barrier, and resists the oxidation of porous Si-Mo layer. Porous Si-Mo layer improves the thermal shock resistance of the coating.展开更多
Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity o...Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.展开更多
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB...To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.展开更多
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer...To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.展开更多
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning elect...The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the an...Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered.展开更多
To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by las...To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.展开更多
Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the compo...Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the composite coating after heat treatment decreases with increasing HCl concentration. The corrosion rates of the composite coatings in as deposited state and after heat treatment in H 2SO 4 and H 3PO 4 solutions respectively decrease with the rise of H 2SO 4 and H 3PO 4 concentrations. The corrosion rate of the composite coating as deposited in FeCl 3 solutions decreases with increasing FeCl 3 concentration, while the rate of the composite coating after heat treatment increases with the rise of FeCl 3 concentration. The corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions at different concentrations increases with rising concentration. In addition, the corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions respectively is much greater than that of the RE Ni W P SiC composite coating as deposited and after heat treatment in the same corrosion media. [展开更多
基金Project(51072165)supported by the National Natural Science Foundation of ChinaProject(KP201307)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU
文摘BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structure was characterized by XRD and FT-IR spectra. The SiCf/SiC composites with dip-coated BN interphase were fabricated by chemical vapor infiltration (CVI) process, and the effects ofBN interphase on the mechanical properties of composites were investigated. The results show that the SiC fibers are fully covered by BN interphase with smooth surface and turbostratic structure (t-BN), and the thickness is about 0.4 μm. The flexural strengths of SiCf/SiC composites with and without BN interphase are about 180 and 95 MPa, respectively. Compared with the as-received SiCf/SiC composites, the composites with BN interphase exhibit an obvious toughened fracture behavior. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in protecting the fibers from chemical attack during matrix infiltration and weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably.
基金This work was financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No. 50225210) the Foundation of Aeronautic Science of China (No. 03H53044).
文摘In order to effectively employ the unique high temperature mechanical properties of carbon/carbon composite substrates, SiC coatings reinforced by SiC whiskers were prepared by pack cementation method. The effect of SiC whiskers on the oxidation resistance properties of the single-layer coating and double-layer coating was investigated. SiC whiskers in the single-layer SiC coating have little effect on the anti-oxidation property but obviously improve the thermal shock property. The double-layer coating with inner-layer reinforced coating exhibits more perfect anti-oxidation ability than the double-layer coating with SiC inner-layer coating.
文摘The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in the coatings increase with the increase of RE in the bath. When RE is added in the coatings, the grains are refined and the trend of formation of amorphous coatings is increased. Moreover, the thermal stability of the RE Ni W B SiC composite coatings is enhanced. The hardness of the coatings is increased with the increase of heat treatment temperature, and it reaches the peak value when heated at 400 ℃. Besides, the hardness of the RE Ni W B SiC coatings is higher than that of the Ni W B SiC coatings.
文摘The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because of the over potential of H 2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co deposit in the form of Ni 4B 3 without evolution of hydrogen when the cathodical potential is kept to be -1.415 ~ -1.700?V.
文摘The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amorphous under 300℃, partially crystalline at 300-400℃,and crystalline when heat treatment temperature reaches 400℃,the crystals being fine Ni3P phase particles.The hardness,wear resistance and the crystallization temperature of the composite coatings increase when an additive is added into the bath.The hardness and wear resistance of the coatings increase with increasing heat treatment temperature,and they will reach their peak values when the heat treatment temperature reaches 400℃.Corrosion experiment indicates that the corrosion resistance of amorphous Ni-W-P-SiC composite coatings in various kinds of corrosive media except nitric acid is better than that of stainless steel 1Cr18Ni9Ti.Scanning electron microscopy observation shows that the additive has no effect on the surface appearance of the coatings,but the current density and the pH value have considerable effects on the surface appearance.
基金Funded by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Aid Program for Innovative Group of National University of Defense Technologythe Science Innovation Foundation of Shanghai Academy of Spaceflight Technology(No.SAST2015043)
文摘In order to enhance the oxidation resistance of C/Si C composites, mullite/yttrium silicate coatings were fabricated on C/Si C composites through dip-coating route. Al_2O_3-SiO_2 sol with high solid content was selected as the raw material for mullite and "silicone resin + Y_2O_3 powder" slurry was used to synthesize yttrium silicate. The microstructure and phase composition of coatings were characterized, and the investigation on oxidation resistance and anti-oxidation mechanism was emphasized. The as-fabricated coatings consisting of SiO_2-rich mullite phase and Y_2Si_2O_7 phase show high density and favorable bonding to C/Si C composites. After oxidized at 1 400 ℃ and 1 500 ℃ for 30 min in static air, the coating-containing C/Si C composites possess 91.9% and 102.4% of the original flexural strength, respectively. The desirable thermal stability of coatings and the further densification of coatings due to viscous flow of rich SiO_2 and Y-Si-Al-O glass are responsible for the excellent oxidation resistance. In addition, the coating-containing composites retain 99.0% of the original flexural strength and the coatings exhibit no cracking and desquamation after 12 times of thermal shock from 1 400 ℃ to room temperature, which are ascribed to the combination of anti-oxidation mechanism and preferable physical and chemical compatibility among C/Si C composites, mullite and Y_2Si_2O_7. The carbothermal reaction at 1 600 ℃ between free carbon in C/Si C substrate and rich SiO_2 in mullite results in severe frothing and desquamation of coatings and obvious degradation in oxidation resistance.
文摘The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results indicate that pulse current can improve the deposition rate of RE-Ni-W-P-SiC composite coatings; W, P, and SiC contents in the coating decrease with the increase of pulse frequency and reach the lowest value at f = 33Hz, whereas the RE content in the composite coatings increases with the increase of pulse frequency. SiC content decreases with the increase of duty cycle, W content reaches the lowest value, and P content reaches the highest value at r = 0.4; pulse current and RE can lead to smaller size of the crystalline grains; however, the effects of different pulse frequency and duty cycle on the morphologies of RE-Ni-W-P-SiC composite coatings are not obvious. The hardness of RE-Ni-W-P-SiC composite coatings is the highest when the duty cycle is at 0.6 and 0.8 and pulse frequency is at 50Hz. At the same pulse frequency, the hardness of RE-Ni-W-P-SiC composite coatings at r= 0.8 is higher than that at r= 0.6.
基金Project(2006CB600908) supported by the National Basic Research Program of China
文摘Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor deposition(CVD) alternated with slurry painting were applied on C/C-SiC composites, respectively. The oxidation of three samples at 1 500 ℃ was compared. The results show that the C/C-SiC substrate is distorted quickly. Three-layer Si-Mo coating is out of service soon due to the formation of many bubbles on surface. The mass loss of coated sample is 0.76% after 1 h oxidation. The sample with SiC/Si-Mo multilayer coating gains mass even after 105 h oxidation. SiC/Si-Mo multilayer coating can provide longtime protection for C/C-SiC composites and has excellent thermal shock resistance. This is attributed to the combination of dense SiC layer and porous Si-Mo layer. Dense SiC layer plays the dual role of physical and chemical barrier, and resists the oxidation of porous Si-Mo layer. Porous Si-Mo layer improves the thermal shock resistance of the coating.
文摘Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.
基金Project(50721003) supported by the Innovation Community Foundation of National Natural Science of ChinaProject(2011CB605805) supported by the National Basic Research Program of China
文摘To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.
基金Projects(51221001,51222207)supported by the National Natural Science Foundation of ChinaProject(090677)supported by the Program for New Century Excellent Talents in University of Ministry of Education of ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities (111 Project) of China
文摘To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
文摘The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金Project supported by the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,ChinaProject(CJ12-01-01)supported by the Innovative Group of National University of Defense Technology,ChinaProject(SAST2015043)supported by the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology,China
文摘Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered.
基金supported by the Open Fund of the State Key Laboratory of Advanced Welding Production Technology in Harbin Institute of Technology,Chinathe Open Fund of the State Key Laboratory of Materials Processing and Die&Mould Technology in Huazhong University of Science and Technology,China
文摘To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.
文摘Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the composite coating after heat treatment decreases with increasing HCl concentration. The corrosion rates of the composite coatings in as deposited state and after heat treatment in H 2SO 4 and H 3PO 4 solutions respectively decrease with the rise of H 2SO 4 and H 3PO 4 concentrations. The corrosion rate of the composite coating as deposited in FeCl 3 solutions decreases with increasing FeCl 3 concentration, while the rate of the composite coating after heat treatment increases with the rise of FeCl 3 concentration. The corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions at different concentrations increases with rising concentration. In addition, the corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions respectively is much greater than that of the RE Ni W P SiC composite coating as deposited and after heat treatment in the same corrosion media. [