Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and sup...Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and supernatant liquids from anaerobic sludge digesters were analyzed for total Kjeldahl nitrogen (TKN), total nitrogen (TN), total chemical oxygen demand (TCOD), biodegradable chemical oxygen demand (bCOD), and biochemical oxygen demand (BOD). Nitrogen removal efficiencies in the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP were evaluated. Inadequate nitrogen removal at the Nonghkaem centralized WWTP was found during the summer period. Influent ratios of bCOD:N at the Nonghkaem plant and the Suvarnabhumi Airport plant were 2.42:1-5.45:1 and 4.1:1-6.5:1, respectively. The efficacy of addition of molasses as a carbon source for enriched denitrifying culture in a BNR process at Nonghkaem was studied. Fluorescent in situ hybridization technique (FISH) was used to identify specific nitrifying bacteria (Nitrosomonas spp., Nitrobacter spp. and Nitrospira spp.). Nitrospira spp. was the most prevalent species in the aeration tank at the Nonghkaem WWTP. This result from FISH suggests that there were significantly low oxygen and nitrite concentration in the aeration tank at the Nonghkaem WWTP during a period of low nitrogen removal.展开更多
连续流分段进水生物脱氮工艺(C SF B N R)是一种串联多个缺氧和好氧区域,充分利用污水中有机碳源进行有效脱氮的污水处理技术。介绍了C SF B N R的原理,重点分析了分段数量、进水流量分配比例、缺氧区和好氧区容积比、污泥回流比和进...连续流分段进水生物脱氮工艺(C SF B N R)是一种串联多个缺氧和好氧区域,充分利用污水中有机碳源进行有效脱氮的污水处理技术。介绍了C SF B N R的原理,重点分析了分段数量、进水流量分配比例、缺氧区和好氧区容积比、污泥回流比和进水C O D/T N等对工艺的影响。增大C SF B N R的分段数量、污泥回流比和容积比可以提高脱氮率,适宜的分段数、容积比和污泥回流比分别是2~4、1:4~1:1和75%~1 00%。优化后的C SF B N R处理C/N低至5的污水可以达到国家一级A排放标准。通过工程应用实例,证实了C SF B N R的脱氮率高于传统生物脱氮工艺。展开更多
文摘Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and supernatant liquids from anaerobic sludge digesters were analyzed for total Kjeldahl nitrogen (TKN), total nitrogen (TN), total chemical oxygen demand (TCOD), biodegradable chemical oxygen demand (bCOD), and biochemical oxygen demand (BOD). Nitrogen removal efficiencies in the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP were evaluated. Inadequate nitrogen removal at the Nonghkaem centralized WWTP was found during the summer period. Influent ratios of bCOD:N at the Nonghkaem plant and the Suvarnabhumi Airport plant were 2.42:1-5.45:1 and 4.1:1-6.5:1, respectively. The efficacy of addition of molasses as a carbon source for enriched denitrifying culture in a BNR process at Nonghkaem was studied. Fluorescent in situ hybridization technique (FISH) was used to identify specific nitrifying bacteria (Nitrosomonas spp., Nitrobacter spp. and Nitrospira spp.). Nitrospira spp. was the most prevalent species in the aeration tank at the Nonghkaem WWTP. This result from FISH suggests that there were significantly low oxygen and nitrite concentration in the aeration tank at the Nonghkaem WWTP during a period of low nitrogen removal.
文摘连续流分段进水生物脱氮工艺(C SF B N R)是一种串联多个缺氧和好氧区域,充分利用污水中有机碳源进行有效脱氮的污水处理技术。介绍了C SF B N R的原理,重点分析了分段数量、进水流量分配比例、缺氧区和好氧区容积比、污泥回流比和进水C O D/T N等对工艺的影响。增大C SF B N R的分段数量、污泥回流比和容积比可以提高脱氮率,适宜的分段数、容积比和污泥回流比分别是2~4、1:4~1:1和75%~1 00%。优化后的C SF B N R处理C/N低至5的污水可以达到国家一级A排放标准。通过工程应用实例,证实了C SF B N R的脱氮率高于传统生物脱氮工艺。