期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Research of Lead-free Na_(0.5)Bi_(0.5)TiO_(3)-BaTiO_(3)System Piezoelectric Ceramics
1
作者 ZHANG Weifeng LIU Ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期325-329,共5页
To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparat... To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparation condition and piezoelectric properties of the samples were investigated.The XRD results show that the fabric transites from rhombohedral to tetragonal gradually with the substitution of the Ba^(2+).The morphotropic phase boundaries(MPB)exists in the composition range of 0.06. 展开更多
关键词 lead-free piezoelectric ceramic Na_(0.5)Bi_(0.5)TiO_(3) BaTiO_(3) piezoelectric performance
下载PDF
Influence of Composition on Properties of BNT-BT Lead-Free Piezoceramics 被引量:4
2
作者 黄新友 高春华 +1 位作者 陈志刚 刘会平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期321-324,共4页
Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3(BNT-BT) were prepared by the conventional piezoelectric ceramic preparation technique (free air atmosphere sintering). The influence of BaTiO3 additive amoun... Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3(BNT-BT) were prepared by the conventional piezoelectric ceramic preparation technique (free air atmosphere sintering). The influence of BaTiO3 additive amount and La2O3 additive amount on the properties of BNT-BT lead-free piezoceramics were investigated. The results show that the dielectric constant(ε) and piezoelectric strain constant(d33) of materials start increasing and then decreasing while BaTiO3 additive amount increasing, the e and d33 of materials have maximum value (ε= 1650, d33 = 120 PC·N -1 ) while x (BaTiO3) =0.06 mol. Theεand d33 of materials start increasing and then decreasing while La2O3 additive amount increasing, the e and d33 of materials have maximum value (ε= 1684, d33 = 153 PC·N-1) while w(La2O3) =0.3% . The influence of La2O3 additive amount on the microstructure of BNT-BT piezoelectric ceramics was analysed by SEM( scanning electron microscope). The influence mechanism of La2O3 additive amount on the properties of BNT-BT piezoelectric ceramics was discussed. The BNT-BT ceramics with optimum comprehensive properties were obtained. 展开更多
关键词 (Bi1/2Na1/2)TiO3 lead-free piezoelectric ceramics piezoelectric ceramics lanthanum oxide barium titanate
下载PDF
Manufacture and Cytotoxicity of a Lead-free Piezoelectric Ceramic as a Bone Substitute—Consolidation of Porous Lithium Sodium Potassium Niobate by Cold Isostatic Pressing 被引量:3
3
作者 Qi Wang Jun Yang +4 位作者 Wu Zhang Roxanne Khoie Yi-ming Li Jian-guo Zhu Zhi-qing Chen 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第2期99-104,共6页
Aim The piezoelectric properties and cytotoxicity of a porous lead-free piezoelectric ceramic for use as a direct bone substitute were investigated. Methodology Cold isostatic pressing (CIP) was applied to fabricate... Aim The piezoelectric properties and cytotoxicity of a porous lead-free piezoelectric ceramic for use as a direct bone substitute were investigated. Methodology Cold isostatic pressing (CIP) was applied to fabricate porous lithium sodium potassium niobate (Li0.06Na0.5K0.44) NbO3 specimens using a pore-forming method. The morphologies of the CIP-processed specimens were characterized and compared to those of specimens made by from conventional pressing procedures. The effects of the ceramic on the attachment and proliferation of osteoblasts isolated from the cranium of 1-day-old Sprague- Dawley rats were examined by a scanning electron microscopy (SEM) and metbylthiazol tetrazolium (MTT) assay. Results The results showed that CIP enhanced piezoelectricity and biological performance of the niobate specimen, and also promoted an extracellular matrix-like topography of it. In vitro studies showed that the CIP-enhanced material had positive effects on the attachment and proliferation of osteoblasts. Conclusion Niobate ceramic generated by CIP shows a promise for being a piezoelectric composite bone substitute. 展开更多
关键词 lead-free piezoelectric ceramic cold isostatic pressing (CIP) CYTOCOMPATIBILITY OSTEOBLAST
下载PDF
Effect of Li content on the microstructure and properties of lead-free piezoelectric(K_(0.5)Na_(0.5))_(1-x)Li_xNbO_3 ceramics prepared by SPS 被引量:3
4
作者 Pei Zhao Boping Zhang Ke Wang Limin Zhang Hailong Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期314-319,共6页
Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and proper... Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and properties were also studied. When the Li content was less than 6at%, a single proveskite phase with the similar structure of (K0.5Na0.5)NbO3 was formed; and a secondary phase with K3Li2Nb5O15 structure was observed in the 6at% 〈 x 〈 20at% compositional range. Furthermore, LiNbO3 existed as the third phase when the Li content was higher than 8at%. The grain sizes increased from 200-500 nm to 5-8 μm when the K3Li2Nb5O15 and LiNbO3 like phases were formed. With increasing Li content, the relative density of the ceramics first decreased from 97% to 93% and then kept constant. The piezoelectric coefficient d33, dielectric constant, and planner electromechanical coupling factor exhibited a decreasing tendency with increasing Li content because of the decrease in density and the formation of the secondary phase such as K3Li2Nb5O15 and LiNbO3. The formation of dense microstructure with a single phase is necessary in improving the properties of the (K0.5Na0.5)1-xLixNbO3 ceramics. 展开更多
关键词 lead-free piezoelectric ceramics spark plasma sintering crystal structure piezoelectric properties
下载PDF
Preparation and Piezoelectric Properties of CuO-added(Ag_(0.75)Li_(0.1)Na_(0.1)K_(0.05_)NbO_3 Lead-free Ceramics 被引量:3
5
作者 吴浪 NING Haixia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期724-728,共5页
CuO-doped(Ag0.75Li0.1Na0.1K0.05)NbO3(ALNKN-xCuO, x = 0.2mol%) lead-free piezoelectric ceramics were prepared by the solid-state reaction method in air atmosphere. The effects of CuO addition on the phase structure... CuO-doped(Ag0.75Li0.1Na0.1K0.05)NbO3(ALNKN-xCuO, x = 0.2mol%) lead-free piezoelectric ceramics were prepared by the solid-state reaction method in air atmosphere. The effects of CuO addition on the phase structure, microstructure, and piezoelectric properties of the ceramics were investigated. The experimental results show that the ALNKN ceramics without doping CuO possess rhombohedral phase along with K2NbrO16- type phase and metallic silver phase. For all of the CuO-doped ALNKN ceramics, a pure perovskite structure with the orthorhombic phase was obtained by enclosing the samples in a corundum tube. A homogeneous microstructure with'the grain size of about 1 ~tm was formed for the ceramics with 0.5mo1% CuO. The grain size increases with increasing amount of CuO. The temperature dependence of dielectric properties indicates that the ferroelectric phase of the ALNKN-xCuO ceramics becomes less stable with the addition of CuO. The ceramics with x = lm01% exhibit relatively good electrical properties along with a high Curie temperature. These results will provide a helpful guidance to preparing other AN-based ceramics by solid-state reaction method in air atmosphere. 展开更多
关键词 (Ag0.75Li0.1Na0.1K0.05)NbO3 lead-free ceramics piezoelectric properties CUO
下载PDF
Modified phase transition and electrical properties of [Li_(0.05)(Na_(0.535)K_(0.48))_(0.95)]- (Nb_(0.94)Sb_(0.06))O_3 lead-free piezoelectric ceramic by sintering temperature 被引量:1
6
作者 Zhao Xiaokun Zhang Boping +3 位作者 Zhao Lei Zhu Lifeng Li Yan Cheng Liqian 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期590-594,共5页
Li/Sb-doped (Na,K)NbO3 with a nominal composition of [Li0.05(Na0.535K0.48)0.95](Nb0.94Sb0.06)O3 ceramic was synthesized by normal sintering. The phase structure, microstructure, and electrical properties were investig... Li/Sb-doped (Na,K)NbO3 with a nominal composition of [Li0.05(Na0.535K0.48)0.95](Nb0.94Sb0.06)O3 ceramic was synthesized by normal sintering. The phase structure, microstructure, and electrical properties were investigated with a special emphasis on the influence of the sintering temperature. A polymorphic phase transition (PPT) from orthorhombic to tetragonal symmetry was observed when the sintering temperature was raised from 1040 to 1050 ℃, whereby the piezoelectric coefficient d33 and the electromechanical coupling coefficient kp reached the peak values of 245 pC·N-1 and 41.2%, respectively. The PPT induced by varying the sintering temperature is due to the different volatilization extents of alkali metals and appears to a lower sintering temperature with increasing Li content. The trace modifying of alkali metal content is more effective than doping B site element to enhance the d33 value. 展开更多
关键词 lead-free sintering temperature microstructure phase piezoelectric properties piezoelectric ceramic
下载PDF
Microstructure and electrical properties of Ti-modified (Na_(0.5)K_(0.5))(Ti_xNb_(1-x))O_3 lead-free piezoelectric ceramics 被引量:1
7
作者 Zhang, Qian Zhang, Boping +2 位作者 Zhao, Pei Li, Haitao Zhang, Limin 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期142-146,共5页
Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures,and piezoelectric and dielectric properties of the le... Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures,and piezoelectric and dielectric properties of the lead-free NKNT ceramics were investigated. X-ray diffraction re-sults indicated that Ti4+ had diffused into the (Na0.5K0.5)NbO3 lattices to form a solid solution with a perovskite structure. The introducing of Ti into the (Na0.5K0.5)NbO3 solid solution effectively reduced the sintering temperature and... 展开更多
关键词 lead-free piezoelectric ceramics TI-DOPED piezoelectric property dielectric property normal sintering oxygen vacancies
下载PDF
Effect of doped Mn on piezoelectric properties of (Na_(0.5)Bi_(0.5))_ (0.92)Ba_(0.08)TiO_3 lead-free ceramics 被引量:1
8
作者 周小元 顾豪爽 李位勇 《Journal of Central South University of Technology》 2005年第3期266-268,共3页
Piezoelectric ceramics (Na0.5Bi0.5) (0.92)Ba0.08TiO3 +x%MnCO3(BNBT-Mn, x=0CD*21.6, mass fraction) were synthesized by conventional solid state reaction. The results show that when the addition of MnCO3 is 0CD*2 1.... Piezoelectric ceramics (Na0.5Bi0.5) (0.92)Ba0.08TiO3 +x%MnCO3(BNBT-Mn, x=0CD*21.6, mass fraction) were synthesized by conventional solid state reaction. The results show that when the addition of MnCO3 is 0CD*2 1.4%, BNBT-Mn ceramics exhibit a single-phase perovskite structure. With the increase of content of MnCO3, piezoelectric constant and electromechanical coupling factor increase rapidly when x is lower than 0.3. Then they both decrease when x is in the range of 0.3 and 1.6. When x=0.3, piezoelectric constant and electromechanical coupling factor reach the maximum value of 160pC/N and 58.5% respectively, which can improve the temperature stability of BNBT-Mn. 展开更多
关键词 lead-free ceramics MN piezoelectric properties
下载PDF
Effects of Na/K ratio on the phase structure and electrical properties of Na_xK_(1-x)NbO_3 lead-free piezoelectric ceramics 被引量:1
9
作者 ZHANG Qian, ZHANG Boping, Li Haitao, and SHANG Pengpeng School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期220-225,共6页
Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special ... Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special emphasis on the influence of Na content.The grain size of the produced dense ceramic was decreased by increasing Na content.A discontinuous change in the space distance was found at the composition close to Na0.7K0.3NbO3 ceramic, which indicates the presence of a transitional composition between two different orthorhombic phases, which is similar to the behavior of morphotropic phase boundary(MPB) in NaxK1-xNbO3 ceramics.Such MPB-like behavior contributes to the enhanced piezoelectric coefficient d33 of 122 pC/N, planar-mode electromechanical coupling coefficient kP of 28.6%, and dielectric constant εr of 703, respectively for the Na0.7K0.3NbO3 ceramic.Cubic temperature TC and the transitional temperature TO-T from orthorhombic to tetragonal phase are observed at around 420°C and 200°C, respectively. 展开更多
关键词 lead-free piezoelectric ceramics NKN sintering morphotropic phase boundary(MPB)
下载PDF
Ferroelectric and piezoelectric properties of SrZrO_3-modified Bi_(0.5)Na_(0.5)TiO_3 lead-free ceramics
10
作者 Adnan MAQBOOL Ali HUSSAIN +4 位作者 Jamil Ur RAHMAN Jong Kyu PARK Tae Gone PARK Jae Sung SONG Myong Ho KIM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第S1期146-151,共6页
The lead-free SrZrO3-modified Bi0.5Na0.5TiO3(BNT-SZ100 x, with x=0-0.15) ceramics were fabricated by a conventional solid-state reaction method. The effects of SZ addition on BNT ceramics were investigated through X-r... The lead-free SrZrO3-modified Bi0.5Na0.5TiO3(BNT-SZ100 x, with x=0-0.15) ceramics were fabricated by a conventional solid-state reaction method. The effects of SZ addition on BNT ceramics were investigated through X-ray diffraction(XRD), scanning electron microscopy(SEM), ferroelectric and electric field-induced strain characterizations. XRD analysis revealed a pure perovskite phase without any traces of secondary phases. Ferroelectric and bipolar field induced-strain curves indicated a disruption of ferroelectric order upon SZ addition into BNT ceramics. A maximum value of remnant polarization(32 μC/cm2) and piezoelectric constant(102 pC/N) was observed at 5%(mole fraction) of SZ. Maximum value of the electric field-induced strain(Smax=0.24%) corresponding to normalized strain(Smax/Emax= d*33= 340 pm/V) was obtained at BNT-SZ9. 展开更多
关键词 lead-free ceramics BNT perovskite structure field induced strain
下载PDF
Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K_(0.5)Na_(0.5)NbO_3-0.04LiSbO_3 lead-free piezoelectric ceramics
11
作者 赵静波 杜红亮 +2 位作者 屈绍波 张红梅 徐卓 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期436-440,共5页
Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5+xNa0.5+xNbO3- 0.04LiSbO3 lead-free piezoelectric ceramics were examined for 0 ≤ x ≤0.02. The piezoelectric coefficients e... Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5+xNa0.5+xNbO3- 0.04LiSbO3 lead-free piezoelectric ceramics were examined for 0 ≤ x ≤0.02. The piezoelectric coefficients exhibited a maximum, d33 = 187 pC/N at x = 0.0075, coinciding with the maximum of the grain size and the apparent density at x = 0.0075. The apparent density and the piezoelectric coefficients decreased with increasing x at higher x which was likely due to the crystal geometrical distortion of 0.96K0.5+xNa0.5+xNbO3-0.04LiSbO3. In addition, super-large grains were found and this may be due to liquid phase sintering. Excess (K++Na+) attracted a sum of space charges to keep the charge neutral, resulting in charge leakage during the course of ceramic polarization, influencing the piezoelectric and ferroelectric properties. These findings are of importance for guiding the design of Ko.sNao.sNbO3-based lead-free ceramics with enhanced electrical properties. 展开更多
关键词 lead-free ceramics PIEZOELECTRIC NON-STOICHIOMETRY K0.5Na0.5sNbO3
下载PDF
Microstructures and Electrical Properties of Bi_(0.5)-(Na_(1-x-y)K_xLi_y)_(0.5)TiO_3 Lead-free Piezoelectric Ceramics
12
作者 张菁 吕文中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期361-364,共4页
The microstructures and electrical properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 lead-free piezoelectric ceramics were studied.These ceramics were prepared by conventional ceramic technique.XRD analysis reveals that the ... The microstructures and electrical properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 lead-free piezoelectric ceramics were studied.These ceramics were prepared by conventional ceramic technique.XRD analysis reveals that the ceramics possess almost pure perovskite phase when y≤0.2.The SEM results show that,with more amounts of Li+,the crystalline grain growing speed is accelerated,and the sintering temperature can effectively be decreased.The measurements of piezoelectric properties indicate that the ceramics with relatively low amount of Li+ and high amount of K+ have comparatively large piezoelectricity.The dielectric measurements show that the ceramics have properties like relaxor ferroelectrics and diffuse phase transition(DPT) at Td and Tc,respectively.The results of ferroelectric measurements reveal the system has relatively higher remanent polarization Pr(27.6 μC/cm2) and lower coercive field Ec(37.5 kV/cm). 展开更多
关键词 Bi0.5Na0.5TiO3 lead-free piezoelectric ceramics piezoelectric property remanent polarization
下载PDF
Design strategies of high-performance lead-free electroceramics for energy storage applications 被引量:1
13
作者 Biao Guo Fei Jin +3 位作者 Li Li Zi-Zhao Pan Xin-Wei Xu Hong Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期853-878,共26页
A greater number of compact and reliable electrostatic capacitors are in demand due to the Internet of Things boom and rapidly growing complex and integrated electronic systems,continuously promoting the development o... A greater number of compact and reliable electrostatic capacitors are in demand due to the Internet of Things boom and rapidly growing complex and integrated electronic systems,continuously promoting the development of high-energy-density ceramic-based capacitors.Although significant successes have been achieved in obtaining high energy densities in lead-based ferroelectric ceramics,the utilization of lead-containing ceramies has been restricted due to environmental and health hazards of lead.Lead-free ferroelectric ceramics have garnered tremendous attention and are expected to replace lead-based ceramics in the near future.However,the energy density of lead-free ceramics is still lagging behind that of lead-containing cou.nterparts,severely limiting their applications.Significant efforts have been made to enhance the energy storage performance of lead-free ceramics using multi-scale design strategies,and exciting progress has been achieved in the past decade.This review briefly discusses the energy storage mechanism and fundamental characteristics of a dielectric capacitor,summarizes and compares the state-of-the-art design strategies for high-energy-density lead-free ceramics,and highlights several critical issues and requirements for industrial production.The prospects and challenges of lead-free ceramics for energy storage applications are also discussed. 展开更多
关键词 Dielectric materials lead-free ceramic Environment friendly Energy storage Design strategy
原文传递
Enhanced electric-field induced strain in Eu^(3+) doped 0.67BiFeO_(3)-0.33BaTiO_(3) lead-free piezoelectric ceramics
14
作者 Wei Li Tongxiang Liang +3 位作者 Xiang He Vyunov Oleg Dongfang Pang Shan Wu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1747-1754,I0004,共9页
Lead-free ferroelectric ceramics,0.67Bi_(1-x)Eu_(x)FeO_(3)-0.33BaTiO_(3)(BF-BT-xEu,x=0-0.02),were prepared via a solid-state reaction,The effect of Eu^(3+) doping on the microstructure,dielectric properties,ferroelect... Lead-free ferroelectric ceramics,0.67Bi_(1-x)Eu_(x)FeO_(3)-0.33BaTiO_(3)(BF-BT-xEu,x=0-0.02),were prepared via a solid-state reaction,The effect of Eu^(3+) doping on the microstructure,dielectric properties,ferroelectric properties,and electric-field-induced strain was investigated.The X-ray diffraction(XRD) results indicate the presence of a mixed phase of tetragonal and rhombohedral at the morphotropic phase boundary(MPB).Doping with an appropriate amount of Eu^(3+) reduces the Fe^(3+) content and decreases the leakage current in the binary system.A converse piezoelectric coefficient(d_(33)*) of 392 pm/V is obtained at BF-BT-0.003Eu under an electric field of 60 kV/cm at room temperature,which has a Curie temperature(T_(C)) of 414℃,The unipolar strain and d_(33)* of BF-BT-0.003Eu ceramics increase to 0.438%and 730 pm/V at 125℃ The field-induced strain response of the BF-BT-0.003Eu ceramics is greater than that of 0.67BF-0.33BT,mainly due to its optimal grain size,reduction of leakage current,and coexistence of ferroelectric-relaxation phases,BF-BT-0.003Eu ceramic is a lead-free candidate for high-temperature actuator applications. 展开更多
关键词 FERROELECTRIC Field-induced strain ceramicS lead-free Rare earths
原文传递
Enhancing energy storage efficiency in lead-free dielectric ceramics through relaxor and lattice strain engineering
15
作者 Xuetian Gong Chao Zhang +7 位作者 Dong Su Wenrong Xiao Fangjie Cen Ying Yang Shenglin Jiang Jing Wang Kanghua Li Guangzu Zhang 《Journal of Materiomics》 SCIE CSCD 2024年第6期1196-1205,共10页
Dielectric capacitors with high power density and fast charge-discharge speed play an essential role in the development of pulsed power systems.The increased demands for miniaturization and practicality of pulsed powe... Dielectric capacitors with high power density and fast charge-discharge speed play an essential role in the development of pulsed power systems.The increased demands for miniaturization and practicality of pulsed power equipment also necessitate the development of dielectric materials that possess high energy density while maintaining ultrahigh efficiency(η).In particular,ultrahigh efficiency signifies minimal energy loss,which is essential for practical applications but challenging to effectively mitigate.Here,we demonstrate a strategy of incorporating heterovalent elements into Ba(Zr_(0.1)Ti_(0.9))O_(3),which contributes to achieving relaxor ferroelectric ceramics and reducing lattice strain,thereby improving the comprehensive energy storage performance.Finally,optimal energy storage performance is attained in 0.85Ba(Zr_(0.1)Ti_(0.9))O_(3)-0.15Bi(Zn_(2/3)Ta_(1/3))O_(3)(BZT-0.15BiZnTa),with an ultrahighηof 97.37%at 440 kV/cm(an advanced level in the lead-free ceramics)and an excellent recoverable energy storage density(Wrec)of 3.74 J/cm^(3).Notably,the BZT-0.15BiZnTa ceramics also exhibit exceptional temperature stability,maintaining fluctuations in Wrec within∼10%andηconsistently exceeding 90% across the wide temperature range of−55℃ to 160℃,and under a high electric field of 250 kV/cm.All these features demonstrate that the relaxor and lattice strain engineering strategies have been successful in achieving high-performance lead-free ceramics,paving the way for designing high-efficiency dielectric capacitors with a wide temperature range. 展开更多
关键词 Energy storage Relaxor ferroelectrics lead-free ceramics Lattice strain engineering
原文传递
Exceptional electrostrain with minimal hysteresis and superior temperature stability under low electric field in KNN-based lead-free piezoceramics
16
作者 Huan Liu Yijin Hao +6 位作者 Ziqi Yang Tianyi Feng Bin Su Xin Zhang Mengping Xue Bo-Ping Zhang Jing-Feng Li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第3期364-372,共9页
Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hy... Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hysteresis under low electric fields has remained a significant challenge.To address this long-standing issue,we have employed a collaborative approach that combines defect engineering,phase engineering,and relaxation engineering.The LKNNS-6BZH ceramic,when sintered at T_(sint)=1170℃,demonstrates an impressive electrostrain with a d_(33) value of 0.276%and 1379 pm·V^(-1)under 20 kV·cm^(-1),which is comparable to or even surpasses that of other lead-free and Pb(Zr,Ti)O_(3)ceramics.Importantly,the electrostrain performance of this ceramic remains stable up to a temperature of 125℃,with the lowest hysteresis observed at 9.73%under 40 kV·cm^(-1).These excellent overall performances are attributed to the presence of defect dipoles involving V′_(A)-V∙∙_(O) and B′_(Nb)-V∙∙O,the coexistence of R-O-T multiphase,and the tuning of the trade-off between long-range ordering and local heterogeneity.This work provides a lead-free alternative for piezoelectric actuators and a paradigm for designing piezoelectric materials with outstanding comprehensive performance under low electric fields. 展开更多
关键词 lead-free piezoelectric ceramics temperature stability electrostrain potassium sodium niobate low hysteresis
原文传递
Lead-free BiFeO_(3)-BaTiO_(3) based high-Tc ferroelectric ceramics:Antiferroelectric chemical modification leading to high energy storage performance
17
作者 Hongliang Wang Liang Shu +3 位作者 Liyu Wei Xin Zhang Qian Li Jing-Feng Li 《Journal of Materiomics》 SCIE CSCD 2024年第4期819-827,共9页
Dielectric capacitors have been widely used in pulsed power devices owing to their ultrahigh power density,fast charge/discharge speed,and excellent stability.However,developing lead-free dielectric materials with a c... Dielectric capacitors have been widely used in pulsed power devices owing to their ultrahigh power density,fast charge/discharge speed,and excellent stability.However,developing lead-free dielectric materials with a combination of high recoverable energy storage density and efficiency remains a challenge.Herein,a high energy storage density of 7.04 J/cm^(3) as well as a high efficiency of 80.5%is realized in the antiferroelectric Ag(Nb_(0.85)Ta_(0.15))O_(3)-modified BiFeO3-BaTiO3 ferroelectric ceramic.This achievement is mainly attributed to the combined effect of a high saturation polarization(Pmax),increased breakdown field(Eb),and reduction of the remnant polarization(Pr).The modification of pseudotetragonal BiFeO3 by Ag(Nb_(0.85)Ta_(0.15))O_(3) leads to a high Pmax,and the enhanced relaxor behavior gives rise to a small Pr.The promoted microstructure(such as a dense structure,fine grains,and compact grain boundaries)after modification results in a high breakdown strength.Furthermore,both the recoverable energy density and efficiency exhibit high stability over a broad range of operating frequencies(1–50 Hz)and working temperatures(25–120℃).These results suggest that the(0.67–x)BiFeO_(3)-0.33BaTiO_(3)-xAg(Nb_(0.85)Ta_(0.15))O_(3) ceramics can be highly competitive as a lead-free relaxor for energy storage applications. 展开更多
关键词 BiFeO_(3) lead-free ceramics Dielectric capacitors Energy storage
原文传递
Effects of dwell time during sintering on electrical properties of 0.98(K_(0.5)Na_(0.5))NbO_3-0.02LaFeO_3 ceramics 被引量:1
18
作者 程花蕾 周万城 +2 位作者 杜红亮 罗发 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2984-2988,共5页
The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sinte... The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm). 展开更多
关键词 (K0.5Na0.5)NbO3 dwell time dielectric properties ferroelectric property lead-free ceramics
下载PDF
Enhanced strain and electrostrictive properties in lead-free BNT-based ceramics via rare earth doping 被引量:5
19
作者 Anping Deng Jiagang Wu 《Journal of Materiomics》 SCIE 2022年第2期401-407,共7页
Bi_(0.5)Na_(0.5)TiO_(3)(BNT)-based ceramics are one of the most promising lead-free ferroelectrics due to their high strain property.Compared to other chemical modifications,rare earth ions doping provides sig-nifican... Bi_(0.5)Na_(0.5)TiO_(3)(BNT)-based ceramics are one of the most promising lead-free ferroelectrics due to their high strain property.Compared to other chemical modifications,rare earth ions doping provides sig-nificant possibility to optimize the strain property of BNT-based ceramics.In this work,the effects of rare earth ions on phase structure,microstructure,and strain&electrostrictive properties of lead-free BNT-based ceramics were systematically investigated.Rare earth ions(i.e.,La^(3+),Sm^(3+),Yb^(3+),Dy^(3+),and Nd ^(3+))were selected as the doping ions.Introducing moderate La^(3+)ions can drive the ferroelectric state of BNT-based ceramics to nonergodic relaxor state or ergodic relaxor state.The enhanced strain response of~0.40-0.42% and high converse piezoelectric coefficient of~600-630 pm/V can be achieved under 60-70 kV/cm for La^(3+)-doped ceramic with nonergodic relaxor state.Besides,the giant electrostrictive coefficient Q 33 of~0.047 m 4/C 2 can be obtained for La ^(3+)-doped ceramic with ergodic relaxor state.Other rare earth ions also present the promotion effect on strain enhancement for BNT-based ceramics.This study affords a significant guidance to optimize strain and electrostrictive properties of BNT-based ce-ramics via rare earth ions doping. 展开更多
关键词 bnt-based ceramics Rare earth doping Strain property Electrostrictive property Structure transition
原文传递
Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi_(0.875)Nb_(0.1)O_(3) 被引量:3
20
作者 Lukang Wu Luomen Tang +7 位作者 Yizan Zhai Yiling Zhang Jianjian Sun Di Hu Zhongbin Pan Zhen Su Yang Zhang Jinjun Liu 《Journal of Materiomics》 SCIE 2022年第3期537-544,共8页
Environmentally friendly lead-free ceramics capacitors,with outstanding power density,rapid charging/discharging rate,and superior stability,have been receiving increasing attention of late for their ability to meet t... Environmentally friendly lead-free ceramics capacitors,with outstanding power density,rapid charging/discharging rate,and superior stability,have been receiving increasing attention of late for their ability to meet the critical requirements of pulsed power devices in low-consumption systems.However,the relatively low energy storage capability must be urgently overcome.Herein,this work reports on leadfree SrTi_(0.875)Nb_(0.1)O_(3)(STN)replacement of(Bi_(0.47)La_(0.03)Na_(0.5))_(0.94)Ba_(0.06)TiO_(3)(BLNBT)ferroelectric ceramics with excellent energy storage performance.Improving relaxor behaviour and breakdown strength(Eb),decreasing grain size,and mitigating large polarization difference are conductive to the enhancement of comprehensive energy storage performances.The phase-field simulation methods are further analysized evolution process of electrical tree in the experimental breakdown.In particular,the 0.70BLNBT-0.30STN ceramic exhibit a large discharged energy density of 4.2 J/cm^(3) with an efficiency of 89.3%at room temperature under electric field of 380 kV/cm.Additionally,for practical applications,the BLNBT-based ceramics achieve a high power density(~62.3 MW/cm^(3))and fast discharged time(~148.8 ns)over broad temperature range(20-200℃).Therefore,this work can provide a simple and effective guideline paradigm for acquiring high-performance dielectric materials in low-consumption systems operating in a wide range of temperatures and long-term operations. 展开更多
关键词 lead-free ceramics Energy storage properties Relaxor behaviour Thermal stability Charge-discharge performance
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部