液化天然气(LNG)储存运输过程中产生的闪蒸气(boil off gas,BOG)具有一定的安全隐患。本文基于前人关于BOG的研究,查阅大量文献,对BOG的主要组成、产生原因和环境影响进行归纳整理,对以往的传统处理工艺以及新型处理工艺进行总结分析,...液化天然气(LNG)储存运输过程中产生的闪蒸气(boil off gas,BOG)具有一定的安全隐患。本文基于前人关于BOG的研究,查阅大量文献,对BOG的主要组成、产生原因和环境影响进行归纳整理,对以往的传统处理工艺以及新型处理工艺进行总结分析,对减少BOG排放量的相关措施进行评述,并总结目前已经得到应用的新技术,以期为今后更高效地利用BOG提供参考。展开更多
We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consid...We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.展开更多
文摘液化天然气(LNG)储存运输过程中产生的闪蒸气(boil off gas,BOG)具有一定的安全隐患。本文基于前人关于BOG的研究,查阅大量文献,对BOG的主要组成、产生原因和环境影响进行归纳整理,对以往的传统处理工艺以及新型处理工艺进行总结分析,对减少BOG排放量的相关措施进行评述,并总结目前已经得到应用的新技术,以期为今后更高效地利用BOG提供参考。
文摘We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.