This note deals with some classes of bounded subsets in a quasi-metric space. We study and compare the bounded sets, totally-bounded sets and the Bourbaki-bounded sets on quasi metric spaces. For example, we show that...This note deals with some classes of bounded subsets in a quasi-metric space. We study and compare the bounded sets, totally-bounded sets and the Bourbaki-bounded sets on quasi metric spaces. For example, we show that in a quasi-metric space, a set may be bounded but not totally bounded. In addition, we investigate their bornologies as well as their relationships with each other. For example, given a compatible quasi-metric, we intend to give some necessary and sufficient conditions for which a quasi metric bornology coincides with the bornology of totally bounded sets, the bornology of bourbaki bounded sets and bornology of bourbaki bounded subsets.展开更多
Let A be a bornological quantum group and R a bornological algebra. If R is an essential A-module, then there is a unique extension to M(A)-module with 1x = x. There is a one-to-one corresponding relationship betwee...Let A be a bornological quantum group and R a bornological algebra. If R is an essential A-module, then there is a unique extension to M(A)-module with 1x = x. There is a one-to-one corresponding relationship between the actions of A and the coactions of . If R is a Galois object for A, then there exists a faithful δ-invariant functional on R. Moreover,the Galois objects also have modular properties such as algebraic quantum groups. By constructing the comultiplication Δ,counit ε, antipode S and invariant functional φ onR×R, R×R can be considered as a bornological quantum group.展开更多
A new method of constructing bornological vector topologies for vector spaces is discussed.In general,the convergent sequence and bounded set are concepts only in topological spaces.However,in this paper,it is first i...A new method of constructing bornological vector topologies for vector spaces is discussed.In general,the convergent sequence and bounded set are concepts only in topological spaces.However,in this paper,it is first introduced sequential convergence C and L * space which is a vector space giving some relation:x mCx between sequences and points in it,then the bounded set is defined in vector space.Let C be a sequential convergence,T(C) be a vector topology on X determined by C and B(C) be the collection of bounded sets determined by C.Then B(C)=B(T(C)).Furthermore,the bornological locally convex topological vector space is constructed by L * vector space.展开更多
文摘This note deals with some classes of bounded subsets in a quasi-metric space. We study and compare the bounded sets, totally-bounded sets and the Bourbaki-bounded sets on quasi metric spaces. For example, we show that in a quasi-metric space, a set may be bounded but not totally bounded. In addition, we investigate their bornologies as well as their relationships with each other. For example, given a compatible quasi-metric, we intend to give some necessary and sufficient conditions for which a quasi metric bornology coincides with the bornology of totally bounded sets, the bornology of bourbaki bounded sets and bornology of bourbaki bounded subsets.
文摘Let A be a bornological quantum group and R a bornological algebra. If R is an essential A-module, then there is a unique extension to M(A)-module with 1x = x. There is a one-to-one corresponding relationship between the actions of A and the coactions of . If R is a Galois object for A, then there exists a faithful δ-invariant functional on R. Moreover,the Galois objects also have modular properties such as algebraic quantum groups. By constructing the comultiplication Δ,counit ε, antipode S and invariant functional φ onR×R, R×R can be considered as a bornological quantum group.
文摘A new method of constructing bornological vector topologies for vector spaces is discussed.In general,the convergent sequence and bounded set are concepts only in topological spaces.However,in this paper,it is first introduced sequential convergence C and L * space which is a vector space giving some relation:x mCx between sequences and points in it,then the bounded set is defined in vector space.Let C be a sequential convergence,T(C) be a vector topology on X determined by C and B(C) be the collection of bounded sets determined by C.Then B(C)=B(T(C)).Furthermore,the bornological locally convex topological vector space is constructed by L * vector space.